Higher-order interactions, adaptivity, and phase transitions in a novel reservoir computing model.

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-10-01 DOI:10.1063/5.0278312
Anastasiia A Emelianova, Oleg V Maslennikov, Vladimir I Nekorkin
{"title":"Higher-order interactions, adaptivity, and phase transitions in a novel reservoir computing model.","authors":"Anastasiia A Emelianova, Oleg V Maslennikov, Vladimir I Nekorkin","doi":"10.1063/5.0278312","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a novel reservoir neural network model that incorporates key properties of brain neural ensembles, including adaptivity, higher-order interactions among units, and the presence of a phase transition, which allows \"edge-of-chaos computations.\" The network's performance was evaluated on benchmark machine learning tasks, such as reproducing multidimensional periodic patterns and predicting the dynamics of the chaotic Lorenz attractor. Our findings indicate that interelement couplings primarily contribute to generating the target output. Furthermore, we demonstrate that a new phase transition occurs after learning, such that the dynamics of the phases become different from the initial.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0278312","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel reservoir neural network model that incorporates key properties of brain neural ensembles, including adaptivity, higher-order interactions among units, and the presence of a phase transition, which allows "edge-of-chaos computations." The network's performance was evaluated on benchmark machine learning tasks, such as reproducing multidimensional periodic patterns and predicting the dynamics of the chaotic Lorenz attractor. Our findings indicate that interelement couplings primarily contribute to generating the target output. Furthermore, we demonstrate that a new phase transition occurs after learning, such that the dynamics of the phases become different from the initial.

一种新型油藏计算模型中的高阶相互作用、自适应和相变。
我们提出了一种新的储层神经网络模型,该模型结合了脑神经系统的关键特性,包括自适应性,单元之间的高阶相互作用,以及允许“混沌边缘计算”的相变的存在。该网络的性能在基准机器学习任务上进行了评估,例如再现多维周期模式和预测混沌洛伦兹吸引子的动态。我们的研究结果表明,元件间耦合主要有助于产生目标输出。此外,我们证明了在学习之后会发生一个新的相变,使得相的动力学与初始相不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信