Cerebellar α1D- adrenergic receptors mediate stress-induced dystonia in totteringtg/tg mice.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Pauline Bohne, Mareike Josten, Lina Rambuscheck, Jana Brüggemann, Xinran Zhu, Max O Rybarski, Melanie D Mark
{"title":"Cerebellar α1<sub>D</sub>- adrenergic receptors mediate stress-induced dystonia in tottering<sup>tg/tg</sup> mice.","authors":"Pauline Bohne, Mareike Josten, Lina Rambuscheck, Jana Brüggemann, Xinran Zhu, Max O Rybarski, Melanie D Mark","doi":"10.1007/s00018-025-05843-1","DOIUrl":null,"url":null,"abstract":"<p><p>Episodic ataxia type 2 (EA2) is an inherited neurological disorder, where patients suffer from chronic ataxia and severe episodes of motor dysfunction exhibited as dystonia. Despite other factors, physical and emotional stress triggers those episodes reliably in both human and mice. We used the well-established EA2 mouse model tottering to explore the cerebellar adrenergic receptor (AR) involvement in stress-induced dystonic attacks. We found that α1-ARs in cerebellar Purkinje cells (PCs) are activated by norepinephrine (NE), differentially expressed and required for initiation of dystonia, while α2-ARs are not. Moreover, pharmacological blockade and shRNA-induced knock down of cerebellar α1<sub>D</sub>-ARs was sufficient to effectively prevent stress-induced dystonia in homozygous tottering<sup>tg/tg</sup> mice but had no impact on ataxia amelioration. In vivo recordings and live calcium (Ca<sup>2+</sup>) imaging of PCs demonstrated that α1<sub>D</sub>-AR blockade successfully protects PCs from NE-mediated erratic firing patterns through decreased release of Ca<sup>2+</sup> from intracellular stores, thus preventing stress-induced dystonia. Together, our data show the modulatory effects of NE on dystonia severity and suggest a predominant role of cerebellar α1<sub>D</sub>-ARs in the formation of stress-induced dystonia in tottering<sup>tg/tg</sup> mice.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"344"},"PeriodicalIF":6.2000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12500514/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05843-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Episodic ataxia type 2 (EA2) is an inherited neurological disorder, where patients suffer from chronic ataxia and severe episodes of motor dysfunction exhibited as dystonia. Despite other factors, physical and emotional stress triggers those episodes reliably in both human and mice. We used the well-established EA2 mouse model tottering to explore the cerebellar adrenergic receptor (AR) involvement in stress-induced dystonic attacks. We found that α1-ARs in cerebellar Purkinje cells (PCs) are activated by norepinephrine (NE), differentially expressed and required for initiation of dystonia, while α2-ARs are not. Moreover, pharmacological blockade and shRNA-induced knock down of cerebellar α1D-ARs was sufficient to effectively prevent stress-induced dystonia in homozygous totteringtg/tg mice but had no impact on ataxia amelioration. In vivo recordings and live calcium (Ca2+) imaging of PCs demonstrated that α1D-AR blockade successfully protects PCs from NE-mediated erratic firing patterns through decreased release of Ca2+ from intracellular stores, thus preventing stress-induced dystonia. Together, our data show the modulatory effects of NE on dystonia severity and suggest a predominant role of cerebellar α1D-ARs in the formation of stress-induced dystonia in totteringtg/tg mice.

小脑α1D-肾上腺素能受体介导tg/tg小鼠应激性肌张力障碍。
2型发作性共济失调(EA2)是一种遗传性神经系统疾病,患者患有慢性共济失调和严重的运动功能障碍发作,表现为肌张力障碍。尽管有其他因素,但无论是人类还是老鼠,身体和情绪上的压力都会引发这些症状。我们使用完善的EA2小鼠摇摇模型来探索小脑肾上腺素能受体(AR)在应激性张力障碍发作中的作用。我们发现,α1-ARs在小脑浦肯野细胞(PCs)中被去甲肾上腺素(NE)激活,差异表达,是肌张力障碍启动所必需的,而α2-ARs则没有。此外,药物阻断和shrna诱导的小脑α1D-ARs的敲低足以有效预防纯合子toteringtg /tg小鼠应激性肌张力障碍,但对共济失调的改善没有影响。pc的体内记录和活钙(Ca2+)成像表明,α1D-AR阻断通过减少细胞内Ca2+的释放,成功地保护pc免受ne介导的不稳定放电模式,从而防止应激性肌张力障碍。综上所述,我们的数据显示了NE对肌张力障碍严重程度的调节作用,并表明小脑α1D-ARs在toteringtg /tg小鼠应激性肌张力障碍的形成中起主导作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular and Molecular Life Sciences
Cellular and Molecular Life Sciences 生物-生化与分子生物学
CiteScore
13.20
自引率
1.20%
发文量
546
审稿时长
1.0 months
期刊介绍: Journal Name: Cellular and Molecular Life Sciences (CMLS) Location: Basel, Switzerland Focus: Multidisciplinary journal Publishes research articles, reviews, multi-author reviews, and visions & reflections articles Coverage: Latest aspects of biological and biomedical research Areas include: Biochemistry and molecular biology Cell biology Molecular and cellular aspects of biomedicine Neuroscience Pharmacology Immunology Additional Features: Welcomes comments on any article published in CMLS Accepts suggestions for topics to be covered
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信