{"title":"Amyloid-β, Tau, and α-Synuclein Protein Interactomes as Therapeutic Targets in Neurodegenerative Diseases.","authors":"D Mohan Kumar, Priti Talwar","doi":"10.1007/s10571-025-01604-7","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's and Parkinson's disease are the most prevalent neurological diseases. Amyloid-β, tau, and α-synuclein proteins are known to be implicated in neurodegenerative disease (NDD). Elucidation of precise therapeutic targets remains a challenge. Therefore, the identification of interactomes of amyloid-β precursor protein (APP), microtubule-associated protein tau (MAPT), and α-synuclein (SNCA) proteins is of great interest, aimed at unraveling novel targets. An integrated analysis was employed to identify direct interactors as therapeutic targets, considering protein-protein interactions and subsequent network analysis. Further, it was proposed to identify hub proteins, intended targets, regulatory factors, disease-gene associations, functional enrichment analyses of the protein interactors interfered with gene ontologies and disease-driving pathways. Protein interactome centered on APP, MAPT, and SNCA identified the top hundred high-confidence protein-protein interactions that revealed BACE1, PSEN1, SORL1, GSK3B, CDK5, SNCAIP, PRKN, and APOE as physical and functional protein interactors. The top ten hub proteins were ranked based on multiple centrality measures and topological algorithms. Further, the integrated network of all three protein interactomes contained distinct nodes with edges. Interestingly, regulatory mechanisms have revealed possible regulatory modules, including cleavage, phosphorylation, and ubiquitination. Top interacting proteins were enriched in several ontology terms, such as regulation of neuronal apoptotic processes, amyloid beta fibril formation, and tau protein binding. Pathway analysis mapped the pathways of neurodegeneration-multiple disease, with a significant level of interacting proteins. Finally, the most comprehensive interactome associated with NDD provides insights into protein interactors, regulating the mechanisms of key proteins that can serve as novel therapeutic targets.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"45 1","pages":"84"},"PeriodicalIF":4.8000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10571-025-01604-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's and Parkinson's disease are the most prevalent neurological diseases. Amyloid-β, tau, and α-synuclein proteins are known to be implicated in neurodegenerative disease (NDD). Elucidation of precise therapeutic targets remains a challenge. Therefore, the identification of interactomes of amyloid-β precursor protein (APP), microtubule-associated protein tau (MAPT), and α-synuclein (SNCA) proteins is of great interest, aimed at unraveling novel targets. An integrated analysis was employed to identify direct interactors as therapeutic targets, considering protein-protein interactions and subsequent network analysis. Further, it was proposed to identify hub proteins, intended targets, regulatory factors, disease-gene associations, functional enrichment analyses of the protein interactors interfered with gene ontologies and disease-driving pathways. Protein interactome centered on APP, MAPT, and SNCA identified the top hundred high-confidence protein-protein interactions that revealed BACE1, PSEN1, SORL1, GSK3B, CDK5, SNCAIP, PRKN, and APOE as physical and functional protein interactors. The top ten hub proteins were ranked based on multiple centrality measures and topological algorithms. Further, the integrated network of all three protein interactomes contained distinct nodes with edges. Interestingly, regulatory mechanisms have revealed possible regulatory modules, including cleavage, phosphorylation, and ubiquitination. Top interacting proteins were enriched in several ontology terms, such as regulation of neuronal apoptotic processes, amyloid beta fibril formation, and tau protein binding. Pathway analysis mapped the pathways of neurodegeneration-multiple disease, with a significant level of interacting proteins. Finally, the most comprehensive interactome associated with NDD provides insights into protein interactors, regulating the mechanisms of key proteins that can serve as novel therapeutic targets.
期刊介绍:
Cellular and Molecular Neurobiology publishes original research concerned with the analysis of neuronal and brain function at the cellular and subcellular levels. The journal offers timely, peer-reviewed articles that describe anatomic, genetic, physiologic, pharmacologic, and biochemical approaches to the study of neuronal function and the analysis of elementary mechanisms. Studies are presented on isolated mammalian tissues and intact animals, with investigations aimed at the molecular mechanisms or neuronal responses at the level of single cells. Cellular and Molecular Neurobiology also presents studies of the effects of neurons on other organ systems, such as analysis of the electrical or biochemical response to neurotransmitters or neurohormones on smooth muscle or gland cells.