P. A. Kaznacheev, A. N. Kamshilin, A. V. Ponomarev, N. B. Podymova, Z.-Yu. Ya. Maibuk
{"title":"Laboratory Studies of Seismoelectric Transformations in Porous Media: I. Past and Future","authors":"P. A. Kaznacheev, A. N. Kamshilin, A. V. Ponomarev, N. B. Podymova, Z.-Yu. Ya. Maibuk","doi":"10.1134/S1069351325700508","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—The paper presents the first section of a work devoted to laboratory studies of seismoelectric transformations in porous media. The main historical stages and current state of research into seismoelectric transformations and their place in the aggregate mechanoelectromagnetic phenomena in rocks are considered. An updated classification of seismoelectric effects is proposed, dividing effects by the type of primary influencing field, by the type of secondary changes, and the ratio of the frequencies of the primary and secondary fields. The data on the main publications for each effect are provided, and current relevant research areas are noted. The history of research into seismoelectric effects in the aggregate mechanoelectromagnetic phenomena at the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, and the role of Corresponding Member G.A. Sobolev in these studies are described separately. The main problems associated with measuring the secondary electromagnetic field, primarily in laboratory experiments, are considered. Five of the most significant problems are identified, and various researchers’ methods for solving them are presented. It is shown that most of the solutions are incomplete and further research should be aimed at a comprehensive solution to these problems. The main problem is independent measurement of the magnetic and electrical components necessary for identifying the sources of the secondary electromagnetic field in the seismoelectric effect. It was proposed to use in the laboratory a contactless measurement of the magnetic effect of electric current, successfully tested earlier in the field. In this proposed method, subproblems have been formulated, the solution of which is necessary to obtain new data on the seismoelectric effect.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"61 4","pages":"626 - 641"},"PeriodicalIF":1.0000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya, Physics of the Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S1069351325700508","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract—The paper presents the first section of a work devoted to laboratory studies of seismoelectric transformations in porous media. The main historical stages and current state of research into seismoelectric transformations and their place in the aggregate mechanoelectromagnetic phenomena in rocks are considered. An updated classification of seismoelectric effects is proposed, dividing effects by the type of primary influencing field, by the type of secondary changes, and the ratio of the frequencies of the primary and secondary fields. The data on the main publications for each effect are provided, and current relevant research areas are noted. The history of research into seismoelectric effects in the aggregate mechanoelectromagnetic phenomena at the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, and the role of Corresponding Member G.A. Sobolev in these studies are described separately. The main problems associated with measuring the secondary electromagnetic field, primarily in laboratory experiments, are considered. Five of the most significant problems are identified, and various researchers’ methods for solving them are presented. It is shown that most of the solutions are incomplete and further research should be aimed at a comprehensive solution to these problems. The main problem is independent measurement of the magnetic and electrical components necessary for identifying the sources of the secondary electromagnetic field in the seismoelectric effect. It was proposed to use in the laboratory a contactless measurement of the magnetic effect of electric current, successfully tested earlier in the field. In this proposed method, subproblems have been formulated, the solution of which is necessary to obtain new data on the seismoelectric effect.
期刊介绍:
Izvestiya, Physics of the Solid Earth is an international peer reviewed journal that publishes results of original theoretical and experimental research in relevant areas of the physics of the Earth''s interior and applied geophysics. The journal welcomes manuscripts from all countries in the English or Russian language.