Among naturally occurring polymers, lignin is the most abundant source of aromatic compounds. Electrocatalytic valorization of lignin derivatives into value-added chemicals represents a sustainable and promising strategy, leveraging the increasing accessibility of intermittent renewable electricity and abundant biomass feedstocks. Compared to the thermal catalytic conversion, electrocatalytic hydrogenation (ECH) and hydrodeoxygenation (HDO) are emerging as key technologies for biomass conversion, owing to their ability to utilize renewable electricity for in situ generation of environmentally benign H2 and other essential reagents. Recent progress in ECH and hydrogenolysis of lignin-derived oxygenated aromatic compounds has demonstrated viable pathways for synthesizing industrially critical chemicals, offering a potential alternative to fossil resource dependency. Nevertheless, research on catalyst design, reaction mechanisms, and system optimization for the electrocatalytic upgrading of lignin derivatives remains in its early stages, necessitating further fundamental and applied investigations. This review begins by providing a comprehensive overview of electrocatalytic hydrogenation and hydrogenolysis processes applied to lignin-derived substrates. Finally, challenges facing and future opportunities for electrocatalytic lignin valorization pathways are discussed.