{"title":"A Multimodal Threat Detection Algorithm for Wide Area Network Security Based on Support Vector Machines","authors":"Bo Yuan","doi":"10.13052/jwe1540-9589.2465","DOIUrl":null,"url":null,"abstract":"Wide area networks (WANs) are increasingly susceptible to sophisticated cyber threats, particularly as critical infrastructure becomes more interconnected. For example, computing-first networks (CFNs) often traverse WANs at edge access nodes, making them more vulnerable to security threats. This paper proposes a multimodal threat detection framework that combines traffic statistics, system logs, and user behavior patterns to deliver interpretable and real-time classification of network threats. The system applies feature normalization and uses principal component analysis (PCA) to reduce dimensionality. A support vector machine (SVM) with a radial basis function kernel is then used to detect non-linear attack patterns. A web-based architecture enables real-time deployment via REST APIs, and extensive evaluations on the CICIDS 2017 and UNSW-NB15 datasets demonstrate high accuracy (up to 96.8%) and low-latency inference. Ablation studies confirm the importance of multimodal fusion, and benchmark tests validate scalability and system responsiveness. This work offers a deployable and efficient solution for real-time WAN security, with promising applications in energy systems, public infrastructure, and enterprise networks.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"24 6","pages":"973-996"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11194294","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11194294/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Wide area networks (WANs) are increasingly susceptible to sophisticated cyber threats, particularly as critical infrastructure becomes more interconnected. For example, computing-first networks (CFNs) often traverse WANs at edge access nodes, making them more vulnerable to security threats. This paper proposes a multimodal threat detection framework that combines traffic statistics, system logs, and user behavior patterns to deliver interpretable and real-time classification of network threats. The system applies feature normalization and uses principal component analysis (PCA) to reduce dimensionality. A support vector machine (SVM) with a radial basis function kernel is then used to detect non-linear attack patterns. A web-based architecture enables real-time deployment via REST APIs, and extensive evaluations on the CICIDS 2017 and UNSW-NB15 datasets demonstrate high accuracy (up to 96.8%) and low-latency inference. Ablation studies confirm the importance of multimodal fusion, and benchmark tests validate scalability and system responsiveness. This work offers a deployable and efficient solution for real-time WAN security, with promising applications in energy systems, public infrastructure, and enterprise networks.
期刊介绍:
The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.