Yinying Pu , Shaorong Huang , Shuang Gao , Yangying Duan , Wenhao Li , Qiyue Li , Han Lin , Kun Zhang , Min Zhou , Wencheng Wu
{"title":"Cerium single-atom catalysts-armed Lactobacillus reuteri for multipronged anti-inflammatory/anti-fibrotic therapy of inflammatory bowel disease","authors":"Yinying Pu , Shaorong Huang , Shuang Gao , Yangying Duan , Wenhao Li , Qiyue Li , Han Lin , Kun Zhang , Min Zhou , Wencheng Wu","doi":"10.1016/j.apsb.2025.06.022","DOIUrl":null,"url":null,"abstract":"<div><div>Simultaneous management of intestinal mucosal barrier dysfunction and gut microbiota dysregulation represents a significant challenge in the treatment of inflammatory bowel disease (IBD). Herein, we report a novel system that integrates multi-enzyme mimicking cerium single-atom nanocatalysts (CeSACs) with <em>Lactobacillus reuteri</em> probiotics (LR@CeSACs) for multipronged management of IBD. In this system, CeSACs demonstrate robust multi-enzyme activities across a broad pH range, effectively scavenging elevated reactive oxygen species, downregulating pro-inflammatory cytokines, and suppressing the expression of fibrosis-related genes. Moreover, probiotics promote the targeting and retention of the CeSACs for sustained catalytic antioxidant therapy. In turn, the inflammation relief enabled by CeSACs promotes bacterial viability, allowing for the rapid reshaping of intestinal barrier function and the restoration of gut microbiota. Therefore, LR@CeSACs exhibit excellent catalytic anti-inflammatory and anti-fibrotic therapeutic effects, as well as a certain prophylactic effect, as demonstrated in several murine models.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"15 10","pages":"Pages 5400-5415"},"PeriodicalIF":14.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica Sinica. B","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211383525004435","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Simultaneous management of intestinal mucosal barrier dysfunction and gut microbiota dysregulation represents a significant challenge in the treatment of inflammatory bowel disease (IBD). Herein, we report a novel system that integrates multi-enzyme mimicking cerium single-atom nanocatalysts (CeSACs) with Lactobacillus reuteri probiotics (LR@CeSACs) for multipronged management of IBD. In this system, CeSACs demonstrate robust multi-enzyme activities across a broad pH range, effectively scavenging elevated reactive oxygen species, downregulating pro-inflammatory cytokines, and suppressing the expression of fibrosis-related genes. Moreover, probiotics promote the targeting and retention of the CeSACs for sustained catalytic antioxidant therapy. In turn, the inflammation relief enabled by CeSACs promotes bacterial viability, allowing for the rapid reshaping of intestinal barrier function and the restoration of gut microbiota. Therefore, LR@CeSACs exhibit excellent catalytic anti-inflammatory and anti-fibrotic therapeutic effects, as well as a certain prophylactic effect, as demonstrated in several murine models.
Acta Pharmaceutica Sinica. BPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
22.40
自引率
5.50%
发文量
1051
审稿时长
19 weeks
期刊介绍:
The Journal of the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association oversees the peer review process for Acta Pharmaceutica Sinica. B (APSB).
Published monthly in English, APSB is dedicated to disseminating significant original research articles, rapid communications, and high-quality reviews that highlight recent advances across various pharmaceutical sciences domains. These encompass pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis, and pharmacokinetics.
A part of the Acta Pharmaceutica Sinica series, established in 1953 and indexed in prominent databases like Chemical Abstracts, Index Medicus, SciFinder Scholar, Biological Abstracts, International Pharmaceutical Abstracts, Cambridge Scientific Abstracts, and Current Bibliography on Science and Technology, APSB is sponsored by the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association. Its production and hosting are facilitated by Elsevier B.V. This collaborative effort ensures APSB's commitment to delivering valuable contributions to the pharmaceutical sciences community.