Impact of Deep Levels in Iron-Doped Gallium Oxides on Electron Transport

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Qingming Huang, , , Xinhang Cai, , , Wenlong Yan, , , Xiangyu Xu, , , Wenjing Xu, , , Duanyang Chen, , , Kang Wang*, , , Zhangqiang Yang*, , , Hongji Qi, , , Kelvin H. L. Zhang*, , and , Ye Yang*, 
{"title":"Impact of Deep Levels in Iron-Doped Gallium Oxides on Electron Transport","authors":"Qingming Huang,&nbsp;, ,&nbsp;Xinhang Cai,&nbsp;, ,&nbsp;Wenlong Yan,&nbsp;, ,&nbsp;Xiangyu Xu,&nbsp;, ,&nbsp;Wenjing Xu,&nbsp;, ,&nbsp;Duanyang Chen,&nbsp;, ,&nbsp;Kang Wang*,&nbsp;, ,&nbsp;Zhangqiang Yang*,&nbsp;, ,&nbsp;Hongji Qi,&nbsp;, ,&nbsp;Kelvin H. L. Zhang*,&nbsp;, and ,&nbsp;Ye Yang*,&nbsp;","doi":"10.1021/acs.jpcc.5c06121","DOIUrl":null,"url":null,"abstract":"<p >Iron-doped gallium oxide (Ga<sub>2</sub>O<sub>3</sub>) is extensively exploited as semi-insulating substrates for epitaxial thin film growth to fabricate next-generation high-power electronics and ultraviolet optoelectronics. However, the influence of iron (Fe) dopants on electron transport dynamics remains poorly understood, particularly in the context of defect-mediated scattering and trapping mechanisms. Here, we employ time-resolved terahertz (THz) spectroscopy to investigate the temperature-dependent photoconductivity and free electron dynamics in Fe-doped Ga<sub>2</sub>O<sub>3</sub> crystals. The frequency-dependent THz conductivities demonstrate dispersive charge transport dominated by heterogeneous scattering, modeled effectively by the Drude–Smith formulizm. The temperature dependence of both electron mobility and electron scattering time indicates a transition from phonon-dominated scattering to a defect-mediated scattering mechanism. Moreover, the kinetics of transient photoconductivity further uncover that the free electrons collapse into a highly localized state fostered by Fe<sup>3+</sup> dopants on a sub-100 ps timescale. Nevertheless, this trapping process is suppressed at low temperature because the itinerant electrons are trapped at the shallow defects before encountering deep centers associated with the Fe<sup>3+</sup> dopant. Our results offer a fundamental understanding of the microscopic electron transport mechanism in Fe-doped Ga<sub>2</sub>O<sub>3</sub> crystals.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 41","pages":"18600–18605"},"PeriodicalIF":3.2000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c06121","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Iron-doped gallium oxide (Ga2O3) is extensively exploited as semi-insulating substrates for epitaxial thin film growth to fabricate next-generation high-power electronics and ultraviolet optoelectronics. However, the influence of iron (Fe) dopants on electron transport dynamics remains poorly understood, particularly in the context of defect-mediated scattering and trapping mechanisms. Here, we employ time-resolved terahertz (THz) spectroscopy to investigate the temperature-dependent photoconductivity and free electron dynamics in Fe-doped Ga2O3 crystals. The frequency-dependent THz conductivities demonstrate dispersive charge transport dominated by heterogeneous scattering, modeled effectively by the Drude–Smith formulizm. The temperature dependence of both electron mobility and electron scattering time indicates a transition from phonon-dominated scattering to a defect-mediated scattering mechanism. Moreover, the kinetics of transient photoconductivity further uncover that the free electrons collapse into a highly localized state fostered by Fe3+ dopants on a sub-100 ps timescale. Nevertheless, this trapping process is suppressed at low temperature because the itinerant electrons are trapped at the shallow defects before encountering deep centers associated with the Fe3+ dopant. Our results offer a fundamental understanding of the microscopic electron transport mechanism in Fe-doped Ga2O3 crystals.

Abstract Image

Abstract Image

掺铁镓氧化物中深能级对电子输运的影响
铁掺杂氧化镓(Ga2O3)被广泛用作半绝缘衬底,用于外延薄膜的生长,以制造下一代高功率电子器件和紫外光电子器件。然而,铁(Fe)掺杂剂对电子传递动力学的影响仍然知之甚少,特别是在缺陷介导的散射和俘获机制的背景下。在这里,我们使用时间分辨太赫兹(THz)光谱研究了fe掺杂Ga2O3晶体的温度依赖性光导率和自由电子动力学。频率相关的太赫兹电导率证明了由非均匀散射主导的色散电荷输运,通过德鲁德-史密斯公式有效地建模。电子迁移率和电子散射时间的温度依赖性表明,电子的散射机制由声子主导向缺陷介导的散射机制转变。此外,瞬态光电导率动力学进一步揭示了Fe3+掺杂在低于100 ps的时间尺度上促进自由电子坍缩到高度局域化状态。然而,这种捕获过程在低温下被抑制,因为在遇到与Fe3+掺杂相关的深层中心之前,流动电子被捕获在浅层缺陷中。我们的研究结果对fe掺杂Ga2O3晶体中的微观电子传递机制提供了基本的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信