{"title":"MOF surface morphology governs interfacial pore architecture and CO₂ dynamics in mixed matrix membranes","authors":"Alejandro Diaz- Marquez, Supriyo Naskar, Dong Fan, Mohamed Eddaoudi, Guillaume Maurin","doi":"10.1039/d5sc04241k","DOIUrl":null,"url":null,"abstract":"Mixed matrix membranes (MMMs), which embed metal–organic frameworks (MOFs) within polymers, offer a promising platform for next-generation, energy-efficient separations. However, the nano-structuring of the MOF/polymer interface and its influence on the MMM performance remains poorly understood. Here, we uncover two fundamental design principles that bridge this gap enabled by an automated, graph theory enhanced molecular simulation platform. First, we demonstrate that MOF surface morphology, specifically its planarity and roughness, plays a decisive role in shaping the topology of the interfacial pore network, including its dimensionality, connectivity, and spatial organization. Second, we show that this pore topology critically governs interfacial CO₂ dynamics: highly interconnected and continuous networks facilitate efficient translational and rotational motion, whereas fragmented architectures severely limit molecular mobility. Beyond providing a deep molecular-level understanding, this work introduces a new design paradigm: deliberate tuning of MOF surface morphology emerges as a powerful strategy to control interfacial nanostructure and optimize gas dynamics. Together, these findings open an unexplored pathway for the rational design of high-performance MMMs for advancing energy-efficient separation technologies.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"26 7 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc04241k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mixed matrix membranes (MMMs), which embed metal–organic frameworks (MOFs) within polymers, offer a promising platform for next-generation, energy-efficient separations. However, the nano-structuring of the MOF/polymer interface and its influence on the MMM performance remains poorly understood. Here, we uncover two fundamental design principles that bridge this gap enabled by an automated, graph theory enhanced molecular simulation platform. First, we demonstrate that MOF surface morphology, specifically its planarity and roughness, plays a decisive role in shaping the topology of the interfacial pore network, including its dimensionality, connectivity, and spatial organization. Second, we show that this pore topology critically governs interfacial CO₂ dynamics: highly interconnected and continuous networks facilitate efficient translational and rotational motion, whereas fragmented architectures severely limit molecular mobility. Beyond providing a deep molecular-level understanding, this work introduces a new design paradigm: deliberate tuning of MOF surface morphology emerges as a powerful strategy to control interfacial nanostructure and optimize gas dynamics. Together, these findings open an unexplored pathway for the rational design of high-performance MMMs for advancing energy-efficient separation technologies.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.