Travelling pulses in the Barkley model: A geometric singular perturbation approach

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Gabriele Grifò, Annalisa Iuorio
{"title":"Travelling pulses in the Barkley model: A geometric singular perturbation approach","authors":"Gabriele Grifò, Annalisa Iuorio","doi":"10.1016/j.chaos.2025.117307","DOIUrl":null,"url":null,"abstract":"In this work, we investigate travelling pulse solutions to the Barkley model, a prototypical example of excitable system with activator-inhibitor dynamics. Such patterns are numerically observed for a wide range of parameter values and show how coherent structures can be induced by mechanisms different from diffusion-driven instability. The intrinsic multiscale nature of this system allows us to apply Geometric Singular Perturbation Theory (GSPT) to constructively establish the existence of travelling pulses as homoclinic orbits in the corresponding three-dimensional phase-space. The analytical findings are corroborated by a thorough numerical investigation via direct simulation as well as continuation based on the software AUTO.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"8 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2025.117307","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigate travelling pulse solutions to the Barkley model, a prototypical example of excitable system with activator-inhibitor dynamics. Such patterns are numerically observed for a wide range of parameter values and show how coherent structures can be induced by mechanisms different from diffusion-driven instability. The intrinsic multiscale nature of this system allows us to apply Geometric Singular Perturbation Theory (GSPT) to constructively establish the existence of travelling pulses as homoclinic orbits in the corresponding three-dimensional phase-space. The analytical findings are corroborated by a thorough numerical investigation via direct simulation as well as continuation based on the software AUTO.
巴克利模型中的行脉冲:一种几何奇异摄动方法
在这项工作中,我们研究了Barkley模型的行脉冲解,Barkley模型是具有激活剂-抑制剂动力学的可激发系统的一个典型例子。这种模式在数值上观察到的参数值范围很广,并显示出相干结构是如何由不同于扩散驱动的不稳定性的机制诱导的。该系统固有的多尺度性质使我们能够应用几何奇异摄动理论(GSPT)在相应的三维相空间中构造地建立以同斜轨道形式存在的行脉冲。通过直接模拟和基于AUTO软件的延续进行了彻底的数值调查,证实了分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信