Enhancing index-tracking performance: Leveraging characteristic-based factor models for reduced estimation errors

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Christian Fieberg, Carlos Osorio, Thorsten Poddig, Armin Varmaz
{"title":"Enhancing index-tracking performance: Leveraging characteristic-based factor models for reduced estimation errors","authors":"Christian Fieberg, Carlos Osorio, Thorsten Poddig, Armin Varmaz","doi":"10.1016/j.ejor.2025.08.043","DOIUrl":null,"url":null,"abstract":"This paper addresses the challenge of minimizing tracking error in passive portfolio management by reducing estimation errors commonly encountered in traditional optimization methods. We introduce an innovative cardinality-constrained mixed-integer optimization framework that incorporates characteristic-based factor models to enhance index-tracking performance. By leveraging these models, our approach aims to minimize errors stemming from estimation uncertainty. In an empirical analysis, we benchmark the tracking errors of our approach against traditional methods, examining both linear and quadratic programs. We further evaluate robustness across various stock market indices, time periods, solvers, and transaction costs. The results indicate that our method consistently reduces estimation errors, achieving superior tracking performance relative to conventional techniques. These findings provide crucial guidance for efficiently optimizing index-tracking portfolios while accommodating practical constraints.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"32 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.08.043","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the challenge of minimizing tracking error in passive portfolio management by reducing estimation errors commonly encountered in traditional optimization methods. We introduce an innovative cardinality-constrained mixed-integer optimization framework that incorporates characteristic-based factor models to enhance index-tracking performance. By leveraging these models, our approach aims to minimize errors stemming from estimation uncertainty. In an empirical analysis, we benchmark the tracking errors of our approach against traditional methods, examining both linear and quadratic programs. We further evaluate robustness across various stock market indices, time periods, solvers, and transaction costs. The results indicate that our method consistently reduces estimation errors, achieving superior tracking performance relative to conventional techniques. These findings provide crucial guidance for efficiently optimizing index-tracking portfolios while accommodating practical constraints.
增强索引跟踪性能:利用基于特征的因子模型来减少估计误差
本文通过减少传统优化方法中常见的估计误差,解决了被动投资组合管理中跟踪误差最小化的问题。我们引入了一个创新的基数约束混合整数优化框架,该框架结合了基于特征的因子模型来增强索引跟踪性能。通过利用这些模型,我们的方法旨在最小化由估计不确定性引起的错误。在实证分析中,我们对传统方法的跟踪误差进行了基准测试,检查了线性和二次规划。我们进一步评估了不同股票市场指数、时间段、求解器和交易成本的稳健性。结果表明,我们的方法一致地减少了估计误差,相对于传统技术实现了优越的跟踪性能。这些发现为有效优化指数跟踪投资组合,同时适应实际约束提供了重要指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信