Investigation of texture evolution and multi-mechanism strengthening in NiTi alloy produced via selective laser melting

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yi Ba , Jiaxing Guo , Miaoning Yan , Liang Guo , Qingmao Zhang
{"title":"Investigation of texture evolution and multi-mechanism strengthening in NiTi alloy produced via selective laser melting","authors":"Yi Ba ,&nbsp;Jiaxing Guo ,&nbsp;Miaoning Yan ,&nbsp;Liang Guo ,&nbsp;Qingmao Zhang","doi":"10.1016/j.jmrt.2025.09.216","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical performance of NiTi alloys is strongly governed by microstructural features such as densification, grain morphology, and dislocation density. However, quantitative insights into how processing parameters systematically control grain size, high-angle grain boundary (HAGB) fraction, texture characteristics, and kernel average misorientation (KAM) to achieve targeted property tuning remain limited. This study integrates experimental analysis, thermo-fluid coupling simulations, and theoretical modeling to systematically investigate the effects of laser power (100–140 W) and scanning speed (900–1100 mm/s) on the densification behavior and microstructural evolution of NiTi alloys fabricated by selective laser melting (SLM). The simulations reveal the evolution of Marangoni convection within the melt pool under varying energy densities, while metallographic analysis quantifies the correlation between porosity and processing parameters. The optimal process parameters (130 W, 1000 mm/s) yielded a tensile strength of 549 MPa, elongation of 6.39 %, elastic modulus of 21.04 GPa, and microhardness of 316–321 HV. EBSD analysis showed HAGB fractions of 41.7 % (X–Z) and 41.4 % (X–Y), with average grain sizes of 19.03 μm and 27.44 μm. TEM revealed abundant linear dislocations and uniformly dispersed NiTi<sub>2</sub> precipitates. These results demonstrate that the combination of high densification, strong texture, and multiple strengthening mechanisms enables a favorable balance of strength and ductility, thereby providing both theoretical guidance and practical insights for optimizing SLM-processed NiTi alloys.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"39 ","pages":"Pages 1960-1976"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785425024706","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanical performance of NiTi alloys is strongly governed by microstructural features such as densification, grain morphology, and dislocation density. However, quantitative insights into how processing parameters systematically control grain size, high-angle grain boundary (HAGB) fraction, texture characteristics, and kernel average misorientation (KAM) to achieve targeted property tuning remain limited. This study integrates experimental analysis, thermo-fluid coupling simulations, and theoretical modeling to systematically investigate the effects of laser power (100–140 W) and scanning speed (900–1100 mm/s) on the densification behavior and microstructural evolution of NiTi alloys fabricated by selective laser melting (SLM). The simulations reveal the evolution of Marangoni convection within the melt pool under varying energy densities, while metallographic analysis quantifies the correlation between porosity and processing parameters. The optimal process parameters (130 W, 1000 mm/s) yielded a tensile strength of 549 MPa, elongation of 6.39 %, elastic modulus of 21.04 GPa, and microhardness of 316–321 HV. EBSD analysis showed HAGB fractions of 41.7 % (X–Z) and 41.4 % (X–Y), with average grain sizes of 19.03 μm and 27.44 μm. TEM revealed abundant linear dislocations and uniformly dispersed NiTi2 precipitates. These results demonstrate that the combination of high densification, strong texture, and multiple strengthening mechanisms enables a favorable balance of strength and ductility, thereby providing both theoretical guidance and practical insights for optimizing SLM-processed NiTi alloys.
选择性激光熔化NiTi合金织构演变及多机制强化研究
NiTi合金的力学性能受微观组织特征(如致密化、晶粒形态和位错密度)的强烈影响。然而,关于加工参数如何系统地控制晶粒尺寸、高角晶界(HAGB)分数、纹理特征和籽粒平均取向偏差(KAM)以实现有针对性的属性调整的定量见解仍然有限。本研究将实验分析、热流体耦合模拟和理论建模相结合,系统地研究了激光功率(100-140 W)和扫描速度(900-1100 mm/s)对选择性激光熔化(SLM)制备NiTi合金致密化行为和显微组织演变的影响。模拟揭示了不同能量密度下熔池内Marangoni对流的演化过程,金相分析量化了孔隙度与工艺参数之间的关系。最佳工艺参数为130 W, 1000 mm/s,拉伸强度为549 MPa,伸长率为6.39%,弹性模量为21.04 GPa,显微硬度为316 ~ 321 HV。EBSD分析显示,HAGB组分分别为41.7% (X-Z)和41.4% (X-Y),平均晶粒尺寸分别为19.03 μm和27.44 μm。TEM显示大量的线位错和均匀分散的NiTi2析出物。这些结果表明,高密度化、强织构和多种强化机制的结合可以实现强度和延性的良好平衡,从而为优化slm加工的NiTi合金提供理论指导和实践见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信