Ag2CO3/α-Fe2O3 n-n heterojunction photocatalyst for efficient degradation of orange G under visible light irradiation

IF 4.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sara Ghazi, Benaissa Rhouta
{"title":"Ag2CO3/α-Fe2O3 n-n heterojunction photocatalyst for efficient degradation of orange G under visible light irradiation","authors":"Sara Ghazi,&nbsp;Benaissa Rhouta","doi":"10.1016/j.matchemphys.2025.131628","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on the development of an Ag<sub>2</sub>CO<sub>3</sub>/α-Fe<sub>2</sub>O<sub>3</sub> composite with an <em>n-n</em> heterojunction structure using a facile precipitation method. The composite was systematically characterized using XRD, Raman, FTIR, SEM-EDS, BET, and UV–Vis DRS, confirming the successful integration of α-Fe<sub>2</sub>O<sub>3</sub> nanorods with Ag<sub>2</sub>CO<sub>3</sub>, enhanced visible-light absorption (E<sub>g</sub> = 1.97 eV <em>vs</em>. 2.37 eV for pure Ag<sub>2</sub>CO<sub>3</sub>), and increased surface area (10.2 m<sup>2</sup>/g <em>vs</em>. 1.3 m<sup>2</sup>/g for Ag<sub>2</sub>CO<sub>3</sub>). The composite exhibited superior photocatalytic performance, achieving 100 % degradation of Orange G (OG) within 60 min under visible light, 85 % mineralization efficiency, and excellent stability with minimal Ag<sup>0</sup> formation. The observed improvements in photocatalytic performance indicate that the formation of an <em>n-n</em> heterojunction generates an internal electric field that facilitates efficient charge separation, as confirmed by photoluminescence and supported by scavenger studies (<sup>⋅</sup>O<sub>2</sub><sup>−</sup>/h<sup>+</sup> as dominant species). In addition, the Z-scheme charge transfer pathway significantly enhances the redox ability of the system. Moreover, α-Fe<sub>2</sub>O<sub>3</sub> nanorods act as both charge-transfer mediators and protective shield against Ag<sub>2</sub>CO<sub>3</sub> photocorrosion. These findings establish the Ag<sub>2</sub>CO<sub>3</sub>/α-Fe<sub>2</sub>O<sub>3</sub> composite as a sustainable and efficient photocatalyst for organic pollutant remediation, effectively addressing the photocorrosion issue of Ag<sub>2</sub>CO<sub>3</sub>.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"348 ","pages":"Article 131628"},"PeriodicalIF":4.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S025405842501274X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the development of an Ag2CO3/α-Fe2O3 composite with an n-n heterojunction structure using a facile precipitation method. The composite was systematically characterized using XRD, Raman, FTIR, SEM-EDS, BET, and UV–Vis DRS, confirming the successful integration of α-Fe2O3 nanorods with Ag2CO3, enhanced visible-light absorption (Eg = 1.97 eV vs. 2.37 eV for pure Ag2CO3), and increased surface area (10.2 m2/g vs. 1.3 m2/g for Ag2CO3). The composite exhibited superior photocatalytic performance, achieving 100 % degradation of Orange G (OG) within 60 min under visible light, 85 % mineralization efficiency, and excellent stability with minimal Ag0 formation. The observed improvements in photocatalytic performance indicate that the formation of an n-n heterojunction generates an internal electric field that facilitates efficient charge separation, as confirmed by photoluminescence and supported by scavenger studies (O2/h+ as dominant species). In addition, the Z-scheme charge transfer pathway significantly enhances the redox ability of the system. Moreover, α-Fe2O3 nanorods act as both charge-transfer mediators and protective shield against Ag2CO3 photocorrosion. These findings establish the Ag2CO3/α-Fe2O3 composite as a sustainable and efficient photocatalyst for organic pollutant remediation, effectively addressing the photocorrosion issue of Ag2CO3.

Abstract Image

Ag2CO3/α-Fe2O3 n-n异质结光催化剂在可见光照射下高效降解橙G
本研究的重点是利用易析出法制备具有n-n异质结结构的Ag2CO3/α-Fe2O3复合材料。利用XRD、拉曼光谱、FTIR、SEM-EDS、BET和UV-Vis DRS对复合材料进行了系统表征,证实α-Fe2O3纳米棒与Ag2CO3成功集成,增强了可见光吸收(Eg = 1.97 eV,纯Ag2CO3为2.37 eV),增加了比表面积(10.2 m2/g,纯Ag2CO3为1.3 m2/g)。该复合材料表现出优异的光催化性能,在可见光下60分钟内实现100%的橙色G (OG)降解,85%的矿化效率,以及极少量Ag0形成的优异稳定性。观察到的光催化性能的改善表明,n-n异质结的形成产生了一个有利于有效电荷分离的内部电场,这一点得到了光致发光的证实,并得到了清除剂研究(⋅O2−/h+为优势种)的支持。此外,Z-scheme电荷转移途径显著增强了体系的氧化还原能力。此外,α-Fe2O3纳米棒作为电荷转移介质和Ag2CO3光腐蚀的保护屏蔽。研究结果表明,Ag2CO3/α-Fe2O3复合材料是一种可持续、高效的有机污染物修复光催化剂,有效解决了Ag2CO3的光腐蚀问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信