Enhancing CO2 adsorption in Ca-based materials via atomic layer deposition of alumina: Mechanisms and stability

IF 4.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Caifeng Huang , Tao Wang , Hemin Hu , Jian Qi
{"title":"Enhancing CO2 adsorption in Ca-based materials via atomic layer deposition of alumina: Mechanisms and stability","authors":"Caifeng Huang ,&nbsp;Tao Wang ,&nbsp;Hemin Hu ,&nbsp;Jian Qi","doi":"10.1016/j.matchemphys.2025.131631","DOIUrl":null,"url":null,"abstract":"<div><div>Calcium-based thermochemical energy storage materials (Ca(OH)<sub>2</sub>/CaCO<sub>3</sub>) have emerged as promising candidates for industrial waste heat recovery and solar thermal storage applications, owing to their exceptional energy storage density (3.2 GJ/m<sup>3</sup>) and cost-effectiveness (&lt;50 $/ton). However, their practical implementation faces significant challenges due to performance degradation caused by sintering and particle agglomeration during cyclic operation. This study demonstrates a synergistic approach combining atomic layer deposition (ALD) of Al<sub>2</sub>O<sub>3</sub> coatings and Al<sup>3+</sup> doping to enhance CO<sub>2</sub> capture in calcium-based materials. Through controlled ALD processing, we achieved nanoscale Al<sub>2</sub>O<sub>3</sub> layers (∼3.6 nm) on CaCO<sub>3</sub> substrates. The 20 deposition cycles identified as optimal for balancing Al dispersion and pore accessibility. Materials characterization revealed that Ca(OH)<sub>2</sub>-derived samples exhibited superior cyclic stability (after 20 cycles) and thermal storage density (∼2400 kJ/kg). Density functional theory calculations uncovered the atomic-scale mechanisms behind these improvements. Al element doping reduced oxygen vacancy formation energy and shortened Al–O bonds by 21 % (1.89 Å vs. Ca–O 2.40 Å), enhancing structural stability. CO<sub>2</sub> adsorption on Al-doped surfaces adopted a bent configuration (135°). In humid conditions, H<sub>2</sub>O co-adsorption further improved performance through a unique [Al–OH<sub>2</sub>⋯O<img>C<img>O⋯Ca] bridge structure, promoting bicarbonate formation.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"348 ","pages":"Article 131631"},"PeriodicalIF":4.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425012775","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Calcium-based thermochemical energy storage materials (Ca(OH)2/CaCO3) have emerged as promising candidates for industrial waste heat recovery and solar thermal storage applications, owing to their exceptional energy storage density (3.2 GJ/m3) and cost-effectiveness (<50 $/ton). However, their practical implementation faces significant challenges due to performance degradation caused by sintering and particle agglomeration during cyclic operation. This study demonstrates a synergistic approach combining atomic layer deposition (ALD) of Al2O3 coatings and Al3+ doping to enhance CO2 capture in calcium-based materials. Through controlled ALD processing, we achieved nanoscale Al2O3 layers (∼3.6 nm) on CaCO3 substrates. The 20 deposition cycles identified as optimal for balancing Al dispersion and pore accessibility. Materials characterization revealed that Ca(OH)2-derived samples exhibited superior cyclic stability (after 20 cycles) and thermal storage density (∼2400 kJ/kg). Density functional theory calculations uncovered the atomic-scale mechanisms behind these improvements. Al element doping reduced oxygen vacancy formation energy and shortened Al–O bonds by 21 % (1.89 Å vs. Ca–O 2.40 Å), enhancing structural stability. CO2 adsorption on Al-doped surfaces adopted a bent configuration (135°). In humid conditions, H2O co-adsorption further improved performance through a unique [Al–OH2⋯OCO⋯Ca] bridge structure, promoting bicarbonate formation.

Abstract Image

通过氧化铝原子层沉积增强ca基材料对CO2的吸附:机理和稳定性
基于钙的热化学储能材料(Ca(OH)2/CaCO3)由于其卓越的储能密度(3.2 GJ/m3)和成本效益(50美元/吨),已成为工业废热回收和太阳能蓄热应用的有希望的候选者。然而,由于在循环运行过程中烧结和颗粒团聚导致的性能下降,它们的实际应用面临着重大挑战。该研究展示了一种将Al2O3涂层的原子层沉积(ALD)和Al3+掺杂相结合的协同方法,以增强钙基材料中的CO2捕获。通过控制ALD处理,我们在CaCO3衬底上实现了纳米级Al2O3层(~ 3.6 nm)。这20个沉积循环被认为是平衡铝分散和孔隙可达性的最佳沉积循环。材料表征表明,Ca(OH)2衍生样品具有优异的循环稳定性(经过20个循环)和热存储密度(~ 2400 kJ/kg)。密度泛函理论计算揭示了这些改进背后的原子尺度机制。Al元素掺杂降低了氧空位形成能,缩短了21%的Al - o键(1.89 Å vs. Ca-O 2.40 Å),增强了结构的稳定性。CO2在al掺杂表面上的吸附采用弯曲构型(135°)。在潮湿条件下,H2O共吸附通过独特的[Al-OH2⋯OCO⋯Ca]桥接结构进一步提高了性能,促进了碳酸氢盐的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信