Ionic liquid-grafting of pineapple peel-derived graphene oxide on Cu substrate for catalytic synthesis of thiazolo[3,2-a][1,3,5]triazin-6(7H)-one derivatives
IF 4.7 3区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Thanh-Thang Le Nguyen , Tuan-Anh Ngoc Tran , Phuong Hoang Tran , Tan Le Hoang Doan , Hai Truong Nguyen
{"title":"Ionic liquid-grafting of pineapple peel-derived graphene oxide on Cu substrate for catalytic synthesis of thiazolo[3,2-a][1,3,5]triazin-6(7H)-one derivatives","authors":"Thanh-Thang Le Nguyen , Tuan-Anh Ngoc Tran , Phuong Hoang Tran , Tan Le Hoang Doan , Hai Truong Nguyen","doi":"10.1016/j.matchemphys.2025.131622","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a novel eco-friendly catalyst, GO/HNO<sub>3</sub>/Cu/IL, was developed from graphene oxide derived from pineapple (<em>Ananas comosus</em>) peel, functionalized with copper and ionic liquid. The synthesis involved pyrolysis, Hummers’ oxidation, nitric acid treatment, Cu<sup>2+</sup> doping, and IL grafting, and the material was fully characterized (FT-IR spectroscopy, Raman spectroscopy, XRD analysis, ICP-MS analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and thermogravimetric analysis (TGA)). This GO/HNO<sub>3</sub>/Cu/IL (5 mg) was applied for the one-pot, three-component Mannich reaction of arylaldehyde, thioglycolic acid, and dicyandiamide to afford thiazolo[3,2-<em>a</em>][1,3,5]triazin-6(7<em>H</em>)-one derivatives under water at 100 °C for 3 h gave the good yield (up to 51 %), and the material exhibited excellent recyclability with potential for large-scale synthesis.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"348 ","pages":"Article 131622"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425012684","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a novel eco-friendly catalyst, GO/HNO3/Cu/IL, was developed from graphene oxide derived from pineapple (Ananas comosus) peel, functionalized with copper and ionic liquid. The synthesis involved pyrolysis, Hummers’ oxidation, nitric acid treatment, Cu2+ doping, and IL grafting, and the material was fully characterized (FT-IR spectroscopy, Raman spectroscopy, XRD analysis, ICP-MS analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and thermogravimetric analysis (TGA)). This GO/HNO3/Cu/IL (5 mg) was applied for the one-pot, three-component Mannich reaction of arylaldehyde, thioglycolic acid, and dicyandiamide to afford thiazolo[3,2-a][1,3,5]triazin-6(7H)-one derivatives under water at 100 °C for 3 h gave the good yield (up to 51 %), and the material exhibited excellent recyclability with potential for large-scale synthesis.
期刊介绍:
Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.