Michael D. Taylor, Simone Strydom, Matthew W. Fraser, Ana M. M. Sequeira, Gary A. Kendrick
{"title":"Breaking down seagrass fragmentation in a marine heatwave impacted World Heritage Area","authors":"Michael D. Taylor, Simone Strydom, Matthew W. Fraser, Ana M. M. Sequeira, Gary A. Kendrick","doi":"10.1002/rse2.70032","DOIUrl":null,"url":null,"abstract":"Marine heatwaves, and other extreme climatic events, are driving mass mortality of habitat‐forming species and substantial ecological change worldwide. However, habitat fragmentation is rarely considered despite its role in structuring seascapes and potential to exacerbate the negative impacts of habitat loss. Here, we quantify fragmentation of globally significant seagrass meadows within the Shark Bay World Heritage Area before and after an unprecedented marine heatwave impacting the Western Australian coastline over the austral summer of 2010/11. We use a spatial pattern index to quantify seagrass fragmentation from satellite‐derived habitat maps (2002, 2010, 2014 and 2016), assess potential predictors of fragmentation and investigate seascape dynamics defined by relationships between seagrass fragmentation and cover change. Our spatiotemporal analysis illustrates widespread fragmentation of seagrass following the marine heatwave, contributing to a dramatic alteration of seascape structure across the World Heritage Area. Fragmentation immediately following the marine heatwave coincided with widespread seagrass loss and was best explained by interactions between a heat stress metric (i.e. degree heating weeks) and depth. Based on the relationship between fragmentation and seagrass cover change, we revealed near‐ubiquitous fragmentation from 2014 to 2016 represents a mixture of long‐term seagrass degradation and evidence of early, patchy recovery. Fragmentation effects are expected to compound the ecological impacts of seagrass mortality following the marine heatwave and prolong recovery. As sea temperatures and the threat of marine heatwaves continue to rise globally, our results highlight the importance of considering fragmentation effects alongside the negative impacts of habitat loss. Our seascape dynamic framework provides a novel approach to define the response of habitat‐forming species to disturbances, including marine heatwaves, that integrates the processes of fragmentation and cover change. This framework provides the opportunity to consider these important processes across a range of threatened ecosystems and identify areas of vulnerability, stability and recovery.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"157 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.70032","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Marine heatwaves, and other extreme climatic events, are driving mass mortality of habitat‐forming species and substantial ecological change worldwide. However, habitat fragmentation is rarely considered despite its role in structuring seascapes and potential to exacerbate the negative impacts of habitat loss. Here, we quantify fragmentation of globally significant seagrass meadows within the Shark Bay World Heritage Area before and after an unprecedented marine heatwave impacting the Western Australian coastline over the austral summer of 2010/11. We use a spatial pattern index to quantify seagrass fragmentation from satellite‐derived habitat maps (2002, 2010, 2014 and 2016), assess potential predictors of fragmentation and investigate seascape dynamics defined by relationships between seagrass fragmentation and cover change. Our spatiotemporal analysis illustrates widespread fragmentation of seagrass following the marine heatwave, contributing to a dramatic alteration of seascape structure across the World Heritage Area. Fragmentation immediately following the marine heatwave coincided with widespread seagrass loss and was best explained by interactions between a heat stress metric (i.e. degree heating weeks) and depth. Based on the relationship between fragmentation and seagrass cover change, we revealed near‐ubiquitous fragmentation from 2014 to 2016 represents a mixture of long‐term seagrass degradation and evidence of early, patchy recovery. Fragmentation effects are expected to compound the ecological impacts of seagrass mortality following the marine heatwave and prolong recovery. As sea temperatures and the threat of marine heatwaves continue to rise globally, our results highlight the importance of considering fragmentation effects alongside the negative impacts of habitat loss. Our seascape dynamic framework provides a novel approach to define the response of habitat‐forming species to disturbances, including marine heatwaves, that integrates the processes of fragmentation and cover change. This framework provides the opportunity to consider these important processes across a range of threatened ecosystems and identify areas of vulnerability, stability and recovery.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.