Predicting drug responses of unseen cell types through transfer learning with foundation models.

IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yixuan Wang, Xinyuan Liu, Yimin Fan, Binghui Xie, James Cheng, Kam Chung Wong, Peter Cheung, Irwin King, Yu Li
{"title":"Predicting drug responses of unseen cell types through transfer learning with foundation models.","authors":"Yixuan Wang, Xinyuan Liu, Yimin Fan, Binghui Xie, James Cheng, Kam Chung Wong, Peter Cheung, Irwin King, Yu Li","doi":"10.1038/s43588-025-00887-6","DOIUrl":null,"url":null,"abstract":"<p><p>Drug repurposing through single-cell perturbation response prediction provides a cost-effective approach for drug development, but accurately predicting responses in unseen cell types that emerge during disease progression remains challenging. Existing methods struggle to achieve generalizable cell-type-specific predictions. To address these limitations, we introduce the cell-type-specific drug perturbatIon responses predictor (CRISP), a framework for predicting perturbation responses in previously unseen cell types at single-cell resolution. CRISP leverages foundation models and cell-type-specific learning strategies to enable effective transfer of information from control to perturbed states even with limited empirical data. Through systematic evaluation across increasingly challenging scenarios, from unseen cell types to cross-platform predictions, CRISP shows generalizability and performance improvements. We demonstrate CRISP's drug repurposing potential through zero-shot prediction from solid tumor data to sorafenib's therapeutic effects in chronic myeloid leukemia. The predicted anti-tumor mechanisms, including CXCR4 pathway inhibition, are supported by independent studies as an effective therapeutic strategy in chronic myeloid leukemia, aligning with past studies and clinical trials.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":18.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00887-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Drug repurposing through single-cell perturbation response prediction provides a cost-effective approach for drug development, but accurately predicting responses in unseen cell types that emerge during disease progression remains challenging. Existing methods struggle to achieve generalizable cell-type-specific predictions. To address these limitations, we introduce the cell-type-specific drug perturbatIon responses predictor (CRISP), a framework for predicting perturbation responses in previously unseen cell types at single-cell resolution. CRISP leverages foundation models and cell-type-specific learning strategies to enable effective transfer of information from control to perturbed states even with limited empirical data. Through systematic evaluation across increasingly challenging scenarios, from unseen cell types to cross-platform predictions, CRISP shows generalizability and performance improvements. We demonstrate CRISP's drug repurposing potential through zero-shot prediction from solid tumor data to sorafenib's therapeutic effects in chronic myeloid leukemia. The predicted anti-tumor mechanisms, including CXCR4 pathway inhibition, are supported by independent studies as an effective therapeutic strategy in chronic myeloid leukemia, aligning with past studies and clinical trials.

基于基础模型的迁移学习预测未知细胞类型的药物反应。
通过单细胞扰动反应预测进行药物重新利用为药物开发提供了一种经济有效的方法,但准确预测疾病进展过程中出现的未见细胞类型的反应仍然具有挑战性。现有的方法难以实现可推广的细胞类型特异性预测。为了解决这些限制,我们引入了细胞类型特异性药物扰动反应预测器(CRISP),这是一个在单细胞分辨率下预测以前未见过的细胞类型的扰动反应的框架。CRISP利用基础模型和细胞类型特定的学习策略,即使在有限的经验数据下,也能有效地将信息从控制状态转移到受扰状态。通过对越来越具有挑战性的场景进行系统评估,从看不见的细胞类型到跨平台预测,CRISP显示了通用性和性能改进。我们通过从实体瘤数据到索拉非尼治疗慢性髓性白血病的零shot预测,证明了CRISP的药物再利用潜力。预测的抗肿瘤机制,包括CXCR4通路抑制,作为慢性髓性白血病的有效治疗策略得到了独立研究的支持,与过去的研究和临床试验一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信