A multiscale finite element model of fluid-microstructure interactions in human intervertebral disc compression.

IF 9.6
Ugo Cachot, Karim Kandil, Fahmi Zaïri, Fahed Zaïri
{"title":"A multiscale finite element model of fluid-microstructure interactions in human intervertebral disc compression.","authors":"Ugo Cachot, Karim Kandil, Fahmi Zaïri, Fahed Zaïri","doi":"10.1016/j.actbio.2025.09.048","DOIUrl":null,"url":null,"abstract":"<p><p>The human intervertebral disc (IVD) is a complex, anisotropic structure composed of the nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous endplates (CEPs), which together enable the spine to bear loads and accommodate multi-directional motion. Although experimental studies have revealed the nonlinear, time-dependent, and region-specific mechanical behavior of the IVD, capturing this complexity in computational models remains a major challenge. This study extends a previously validated biphasic finite element model of the AF - incorporating collagen fiber networks and interlamellar structures - into a full-scale IVD model that accounts for the heterogeneous, anisotropic, and fluid-solid coupled properties of all components. A multiscale identification strategy links experimental microstructural properties to macroscopic behavior, and an automated meshing approach enables systematic variations in geometric features. The model is validated against a broad set of experimental data under three compressive loading protocols: compressive creep-recovery, cyclic compression, and stepwise compression-relaxation. Numerical results reproduce global and regional IVD mechanics, including energy absorption, strain-rate sensitivity, and spatial strain heterogeneity, governed by fluid-microstructure interactions. The study also evaluates key experimental factors - such as preload duration, hydration, and geometry - highlighting their influence on the IVD response. These findings demonstrate the predictive strength of the multiscale biphasic approach, providing a robust computational foundation for advancing IVD biomechanics and supporting future clinical applications in spine health and degeneration. STATEMENT OF SIGNIFICANCE: This study introduces a validated multiscale finite element model that simulates the time-dependent behavior of the human intervertebral disc by capturing key fluid-microstructure interactions. Building on previous modeling of the annulus fibrosus, this framework extends to the full disc, integrating the biphasic, fiber-reinforced lamellar structure of the annulus and its coupling with the nucleus pulposus. Parameters are identified from experimental data and validated under multiple loading scenarios, including creep-recovery, cyclic compression, and stepwise compression-relaxation. The model reproduces global mechanical behavior and regional strain distributions, emphasizing the roles of fiber recruitment, fluid redistribution, and anatomical variation. This work enhances our understanding of disc biomechanics and offers a predictive platform for investigating disc degeneration and guiding repair strategies.</p>","PeriodicalId":93848,"journal":{"name":"Acta biomaterialia","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biomaterialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.actbio.2025.09.048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The human intervertebral disc (IVD) is a complex, anisotropic structure composed of the nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous endplates (CEPs), which together enable the spine to bear loads and accommodate multi-directional motion. Although experimental studies have revealed the nonlinear, time-dependent, and region-specific mechanical behavior of the IVD, capturing this complexity in computational models remains a major challenge. This study extends a previously validated biphasic finite element model of the AF - incorporating collagen fiber networks and interlamellar structures - into a full-scale IVD model that accounts for the heterogeneous, anisotropic, and fluid-solid coupled properties of all components. A multiscale identification strategy links experimental microstructural properties to macroscopic behavior, and an automated meshing approach enables systematic variations in geometric features. The model is validated against a broad set of experimental data under three compressive loading protocols: compressive creep-recovery, cyclic compression, and stepwise compression-relaxation. Numerical results reproduce global and regional IVD mechanics, including energy absorption, strain-rate sensitivity, and spatial strain heterogeneity, governed by fluid-microstructure interactions. The study also evaluates key experimental factors - such as preload duration, hydration, and geometry - highlighting their influence on the IVD response. These findings demonstrate the predictive strength of the multiscale biphasic approach, providing a robust computational foundation for advancing IVD biomechanics and supporting future clinical applications in spine health and degeneration. STATEMENT OF SIGNIFICANCE: This study introduces a validated multiscale finite element model that simulates the time-dependent behavior of the human intervertebral disc by capturing key fluid-microstructure interactions. Building on previous modeling of the annulus fibrosus, this framework extends to the full disc, integrating the biphasic, fiber-reinforced lamellar structure of the annulus and its coupling with the nucleus pulposus. Parameters are identified from experimental data and validated under multiple loading scenarios, including creep-recovery, cyclic compression, and stepwise compression-relaxation. The model reproduces global mechanical behavior and regional strain distributions, emphasizing the roles of fiber recruitment, fluid redistribution, and anatomical variation. This work enhances our understanding of disc biomechanics and offers a predictive platform for investigating disc degeneration and guiding repair strategies.

人椎间盘压缩中流体-微观结构相互作用的多尺度有限元模型。
人椎间盘(IVD)是一个复杂的各向异性结构,由髓核(NP)、纤维环(AF)和软骨终板(cep)组成,它们共同使脊柱能够承受载荷并适应多向运动。尽管实验研究已经揭示了IVD的非线性、时变和区域特异性力学行为,但在计算模型中捕捉这种复杂性仍然是一个主要挑战。该研究将先前验证的AF双相有限元模型(包含胶原纤维网络和层间结构)扩展为全尺寸IVD模型,该模型考虑了所有组分的非均质、各向异性和流固耦合特性。多尺度识别策略将实验微观结构特性与宏观行为联系起来,自动化网格方法使几何特征的系统变化成为可能。该模型在三种压缩加载协议下进行了广泛的实验数据验证:压缩蠕变恢复、循环压缩和逐步压缩松弛。数值结果再现了全球和区域IVD力学,包括能量吸收、应变率敏感性和空间应变非均质性,由流体-微观结构相互作用控制。该研究还评估了关键的实验因素——如预加载时间、水合作用和几何形状——强调了它们对IVD反应的影响。这些发现证明了多尺度双相方法的预测能力,为推进IVD生物力学和支持未来脊柱健康和退变的临床应用提供了强大的计算基础。意义声明:本研究引入了一个经过验证的多尺度有限元模型,该模型通过捕获关键的流体-微观结构相互作用来模拟人类椎间盘的时间依赖性行为。在先前纤维环模型的基础上,该框架扩展到整个椎间盘,整合了纤维环的双相、纤维增强的板层结构及其与髓核的耦合。从实验数据中确定参数,并在多种加载场景下进行验证,包括蠕变恢复、循环压缩和逐步压缩松弛。该模型再现了整体力学行为和区域应变分布,强调了纤维招募、流体重新分配和解剖变异的作用。这项工作提高了我们对椎间盘生物力学的理解,并为研究椎间盘退变和指导修复策略提供了预测平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信