{"title":"Accuracy and reproducibility of large language model measurements of liver metastases: comparison with radiologist measurements.","authors":"Haruto Sugawara, Akiyo Takada, Shimpei Kato","doi":"10.1007/s11604-025-01884-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To compare the accuracy and reproducibility of lesion-diameter measurements performed by three state-of-the-art LLMs with those obtained by radiologists.</p><p><strong>Materials and methods: </strong>In this retrospective study using a public database, 83 patients with solitary colorectal-cancer liver metastases were identified. From each CT series, a radiologist extracted the single axial slice showing the maximal tumor diameter and converted it to a 512 × 512-pixel PNG image (window level 50 HU, window width 400 HU) with pixel size encoded in the filename. Three LLMs-ChatGPT-o3 (OpenAI), Gemini 2.5 Pro (Google), and Claude 4 Opus (Anthropic)-were prompted to estimate the longest lesion diameter twice, ≥ 1 week apart. Two board-certified radiologists (12 years' experience each) independently measured the same single slice images and one radiologist repeated the measurements after ≥ 1 week. Agreement was assessed with intraclass correlation coefficients (ICC); 95% confidence intervals were obtained by bootstrap resampling (5 000 iterations).</p><p><strong>Results: </strong>Radiologist inter-observer agreement was excellent (ICC = 0.95, 95% CI 0.86-0.99); intra-observer agreement was 0.98 (95% CI 0.94-0.99). Gemini achieved good model-to-radiologist agreement (ICC = 0.81, 95% CI 0.68-0.89) and intra-model reproducibility (ICC = 0.78, 95% CI 0.65-0.87). GPT-o3 showed moderate agreement (ICC = 0.52) and poor reproducibility (ICC = 0.25); Claude showed poor agreement (ICC = 0.07) and reproducibility (ICC = 0.47).</p><p><strong>Conclusion: </strong>LLMs do not yet match radiologists in measuring colorectal cancer liver metastasis; however, Gemini's good agreement and reproducibility highlight the rapid progress of image interpretation capability of LLMs.</p>","PeriodicalId":14691,"journal":{"name":"Japanese Journal of Radiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11604-025-01884-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To compare the accuracy and reproducibility of lesion-diameter measurements performed by three state-of-the-art LLMs with those obtained by radiologists.
Materials and methods: In this retrospective study using a public database, 83 patients with solitary colorectal-cancer liver metastases were identified. From each CT series, a radiologist extracted the single axial slice showing the maximal tumor diameter and converted it to a 512 × 512-pixel PNG image (window level 50 HU, window width 400 HU) with pixel size encoded in the filename. Three LLMs-ChatGPT-o3 (OpenAI), Gemini 2.5 Pro (Google), and Claude 4 Opus (Anthropic)-were prompted to estimate the longest lesion diameter twice, ≥ 1 week apart. Two board-certified radiologists (12 years' experience each) independently measured the same single slice images and one radiologist repeated the measurements after ≥ 1 week. Agreement was assessed with intraclass correlation coefficients (ICC); 95% confidence intervals were obtained by bootstrap resampling (5 000 iterations).
Results: Radiologist inter-observer agreement was excellent (ICC = 0.95, 95% CI 0.86-0.99); intra-observer agreement was 0.98 (95% CI 0.94-0.99). Gemini achieved good model-to-radiologist agreement (ICC = 0.81, 95% CI 0.68-0.89) and intra-model reproducibility (ICC = 0.78, 95% CI 0.65-0.87). GPT-o3 showed moderate agreement (ICC = 0.52) and poor reproducibility (ICC = 0.25); Claude showed poor agreement (ICC = 0.07) and reproducibility (ICC = 0.47).
Conclusion: LLMs do not yet match radiologists in measuring colorectal cancer liver metastasis; however, Gemini's good agreement and reproducibility highlight the rapid progress of image interpretation capability of LLMs.
期刊介绍:
Japanese Journal of Radiology is a peer-reviewed journal, officially published by the Japan Radiological Society. The main purpose of the journal is to provide a forum for the publication of papers documenting recent advances and new developments in the field of radiology in medicine and biology. The scope of Japanese Journal of Radiology encompasses but is not restricted to diagnostic radiology, interventional radiology, radiation oncology, nuclear medicine, radiation physics, and radiation biology. Additionally, the journal covers technical and industrial innovations. The journal welcomes original articles, technical notes, review articles, pictorial essays and letters to the editor. The journal also provides announcements from the boards and the committees of the society. Membership in the Japan Radiological Society is not a prerequisite for submission. Contributions are welcomed from all parts of the world.