Paula M Miotto, Jacqueline Bayliss, Gio Fidelito, James R Bell, Lea M D Delbridge, Matthew J Watt, Magdalene K Montgomery
{"title":"Diabetic heart shows preferential secretion of inner mitochondrial membrane proteins in the presence of mitochondrial oxidative stress.","authors":"Paula M Miotto, Jacqueline Bayliss, Gio Fidelito, James R Bell, Lea M D Delbridge, Matthew J Watt, Magdalene K Montgomery","doi":"10.1152/ajpendo.00073.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Heart disease, including diabetic cardiomyopathy, is a leading cause of mortality in patients with type 2 diabetes (T2D). Defects in heart function are accompanied by marked changes in cardiac metabolism, including dysregulation of lipid and glucose metabolism, mitochondrial dysfunction, and oxidative stress. In addition to these metabolic defects, the heart is an important endocrine organ. However, while T2D has been shown to impact the secretome of liver, skeletal muscle and adipose tissue (among others), little is known about the secretome of the heart, and the influence of T2D on cardiac protein secretion. Using precision-cut heart slices from mice with insulin resistance (20-weeks of high-fat feeding) and T2D (db/db mice) compared to their respective controls, we performed mass spectrometry proteomics analysis of cardiac protein secretion as well as proteins contained within extracellular vesicles (EV). We reveal striking remodelling of cardiac protein secretion in T2D but not diet-induced insulin resistance. Specifically, we show a marked increase in the secretion of inner mitochondrial membrane (IMM) proteins in T2D, which was accompanied by a disproportional accumulation of outer mitochondrial membrane proteins within the heart. This was associated with increased mitochondrial oxidative stress, selective oxidative damage to IMM proteins, and reduced markers of LC3-mediated mitophagy in the db/db heart, highlighting secretion of mitochondrial components as a potential alternative pathway for mitochondrial quality control. Altogether, this study provides an in-depth proteomics analysis showing remodelling of cardiac protein secretion in T2D and provides insights into a possible link between mitochondrial oxidative stress and the release of mitochondrial components.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00073.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Heart disease, including diabetic cardiomyopathy, is a leading cause of mortality in patients with type 2 diabetes (T2D). Defects in heart function are accompanied by marked changes in cardiac metabolism, including dysregulation of lipid and glucose metabolism, mitochondrial dysfunction, and oxidative stress. In addition to these metabolic defects, the heart is an important endocrine organ. However, while T2D has been shown to impact the secretome of liver, skeletal muscle and adipose tissue (among others), little is known about the secretome of the heart, and the influence of T2D on cardiac protein secretion. Using precision-cut heart slices from mice with insulin resistance (20-weeks of high-fat feeding) and T2D (db/db mice) compared to their respective controls, we performed mass spectrometry proteomics analysis of cardiac protein secretion as well as proteins contained within extracellular vesicles (EV). We reveal striking remodelling of cardiac protein secretion in T2D but not diet-induced insulin resistance. Specifically, we show a marked increase in the secretion of inner mitochondrial membrane (IMM) proteins in T2D, which was accompanied by a disproportional accumulation of outer mitochondrial membrane proteins within the heart. This was associated with increased mitochondrial oxidative stress, selective oxidative damage to IMM proteins, and reduced markers of LC3-mediated mitophagy in the db/db heart, highlighting secretion of mitochondrial components as a potential alternative pathway for mitochondrial quality control. Altogether, this study provides an in-depth proteomics analysis showing remodelling of cardiac protein secretion in T2D and provides insights into a possible link between mitochondrial oxidative stress and the release of mitochondrial components.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.