IIoT-Enabled Apparel Demand Forecasting: A Random Forest Approach Mining E-Commerce Reviews

IF 0.5 Q4 TELECOMMUNICATIONS
Zhihang Tang, Jinyang Shi, Zipei Tang
{"title":"IIoT-Enabled Apparel Demand Forecasting: A Random Forest Approach Mining E-Commerce Reviews","authors":"Zhihang Tang,&nbsp;Jinyang Shi,&nbsp;Zipei Tang","doi":"10.1002/itl2.70158","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Within the industrial internet of things (IIoT) ecosystems, apparel manufacturers face the dual challenge of integrating high-velocity consumer feedback streams from e-commerce platforms and translating them into real-time, high-fidelity demand forecasts. This study presents an IIoT-native framework that employs random forest regression (RFR) to fuse multi-modal review features—sentiment polarity, key phrases, and aggregate ratings—collected via edge gateways from 1100 men's garments on \nJD.com. Innovatively, the proposed framework not only outperforms traditional linear models such as ordinary least squares (OLS) and multiple linear regression (MLR) in terms of predictive accuracy but also demonstrates robustness to noise and outliers across heterogeneous product categories. The cloud-hosted RFR model achieves an <i>R</i><sup>2</sup> of 0.9442 and root mean square error (RMSE) of 105.76, representing a 5.6% and 35.9% improvement over MLR and OLS in RMSE, respectively. This study provides the first multi-category empirical evidence that fusing review-level sentiment, key phrases, and ratings via RFR yields significant enhancements in IIoT-scale apparel demand forecasting.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 6","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Within the industrial internet of things (IIoT) ecosystems, apparel manufacturers face the dual challenge of integrating high-velocity consumer feedback streams from e-commerce platforms and translating them into real-time, high-fidelity demand forecasts. This study presents an IIoT-native framework that employs random forest regression (RFR) to fuse multi-modal review features—sentiment polarity, key phrases, and aggregate ratings—collected via edge gateways from 1100 men's garments on JD.com. Innovatively, the proposed framework not only outperforms traditional linear models such as ordinary least squares (OLS) and multiple linear regression (MLR) in terms of predictive accuracy but also demonstrates robustness to noise and outliers across heterogeneous product categories. The cloud-hosted RFR model achieves an R2 of 0.9442 and root mean square error (RMSE) of 105.76, representing a 5.6% and 35.9% improvement over MLR and OLS in RMSE, respectively. This study provides the first multi-category empirical evidence that fusing review-level sentiment, key phrases, and ratings via RFR yields significant enhancements in IIoT-scale apparel demand forecasting.

Abstract Image

基于工业物联网的服装需求预测:随机森林方法挖掘电子商务评论
在工业物联网(IIoT)生态系统中,服装制造商面临着双重挑战,即整合来自电子商务平台的高速消费者反馈流,并将其转化为实时、高保真的需求预测。本研究提出了一个工业物联网原生框架,该框架采用随机森林回归(RFR)融合多模态评论特征——情感极性、关键短语和综合评分——通过边缘网关从京东上的1100件男装中收集。创新的是,所提出的框架不仅在预测精度方面优于传统的线性模型,如普通最小二乘(OLS)和多元线性回归(MLR),而且在异构产品类别中表现出对噪声和异常值的鲁棒性。云托管RFR模型的R2为0.9442,均方根误差(RMSE)为105.76,在RMSE上分别比MLR和OLS提高了5.6%和35.9%。这项研究提供了第一个多类别的经验证据,通过RFR融合评论级情绪、关键短语和评级,可以显著增强工业物联网规模的服装需求预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信