Ming Li, Xueqian Jin, Xuejiao Hu, Jinghao Cao, Sidan Du, Yang Li
{"title":"Robust and Flexible Omnidirectional Depth Estimation With Multiple 360-Degree Cameras","authors":"Ming Li, Xueqian Jin, Xuejiao Hu, Jinghao Cao, Sidan Du, Yang Li","doi":"10.1049/ipr2.70217","DOIUrl":null,"url":null,"abstract":"<p>Omnidirectional depth estimation has received much attention from researchers in recent years. However, challenges arise due to camera soiling and variations in camera layouts, affecting the robustness and flexibility of the algorithm. In this paper, we use the geometric constraints and redundant information of multiple 360<span></span><math>\n <semantics>\n <msup>\n <mrow></mrow>\n <mo>∘</mo>\n </msup>\n <annotation>$^\\circ$</annotation>\n </semantics></math> cameras to achieve robust and flexible multi-view omnidirectional depth estimation. We implement two algorithms, in which the two-stage algorithm obtains initial depth maps by pairwise stereo matching of multiple cameras and fuses the multiple depth maps for the final depth estimation; the one-stage algorithm adopts spherical sweeping based on hypothetical depths to construct a uniform spherical matching cost of the multi-camera images and obtain the depth. Additionally, a generalized epipolar equirectangular projection is introduced to simplify the spherical epipolar constraints. To overcome panorama distortion, a spherical feature extractor is implemented. Furthermore, a synthetic 360<span></span><math>\n <semantics>\n <msup>\n <mrow></mrow>\n <mo>∘</mo>\n </msup>\n <annotation>$^\\circ$</annotation>\n </semantics></math> dataset of outdoor road scenes is presented, which takes soiled camera lenses and glare into consideration and is more consistent with the real-world environment. Experiments show that our two algorithms achieve state-of-the-art performance, accurately predicting depth maps even when provided with soiled panorama inputs. The flexibility of the algorithms is experimentally validated in terms of camera layouts and numbers.</p>","PeriodicalId":56303,"journal":{"name":"IET Image Processing","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ipr2.70217","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Processing","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/ipr2.70217","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Omnidirectional depth estimation has received much attention from researchers in recent years. However, challenges arise due to camera soiling and variations in camera layouts, affecting the robustness and flexibility of the algorithm. In this paper, we use the geometric constraints and redundant information of multiple 360 cameras to achieve robust and flexible multi-view omnidirectional depth estimation. We implement two algorithms, in which the two-stage algorithm obtains initial depth maps by pairwise stereo matching of multiple cameras and fuses the multiple depth maps for the final depth estimation; the one-stage algorithm adopts spherical sweeping based on hypothetical depths to construct a uniform spherical matching cost of the multi-camera images and obtain the depth. Additionally, a generalized epipolar equirectangular projection is introduced to simplify the spherical epipolar constraints. To overcome panorama distortion, a spherical feature extractor is implemented. Furthermore, a synthetic 360 dataset of outdoor road scenes is presented, which takes soiled camera lenses and glare into consideration and is more consistent with the real-world environment. Experiments show that our two algorithms achieve state-of-the-art performance, accurately predicting depth maps even when provided with soiled panorama inputs. The flexibility of the algorithms is experimentally validated in terms of camera layouts and numbers.
期刊介绍:
The IET Image Processing journal encompasses research areas related to the generation, processing and communication of visual information. The focus of the journal is the coverage of the latest research results in image and video processing, including image generation and display, enhancement and restoration, segmentation, colour and texture analysis, coding and communication, implementations and architectures as well as innovative applications.
Principal topics include:
Generation and Display - Imaging sensors and acquisition systems, illumination, sampling and scanning, quantization, colour reproduction, image rendering, display and printing systems, evaluation of image quality.
Processing and Analysis - Image enhancement, restoration, segmentation, registration, multispectral, colour and texture processing, multiresolution processing and wavelets, morphological operations, stereoscopic and 3-D processing, motion detection and estimation, video and image sequence processing.
Implementations and Architectures - Image and video processing hardware and software, design and construction, architectures and software, neural, adaptive, and fuzzy processing.
Coding and Transmission - Image and video compression and coding, compression standards, noise modelling, visual information networks, streamed video.
Retrieval and Multimedia - Storage of images and video, database design, image retrieval, video annotation and editing, mixed media incorporating visual information, multimedia systems and applications, image and video watermarking, steganography.
Applications - Innovative application of image and video processing technologies to any field, including life sciences, earth sciences, astronomy, document processing and security.
Current Special Issue Call for Papers:
Evolutionary Computation for Image Processing - https://digital-library.theiet.org/files/IET_IPR_CFP_EC.pdf
AI-Powered 3D Vision - https://digital-library.theiet.org/files/IET_IPR_CFP_AIPV.pdf
Multidisciplinary advancement of Imaging Technologies: From Medical Diagnostics and Genomics to Cognitive Machine Vision, and Artificial Intelligence - https://digital-library.theiet.org/files/IET_IPR_CFP_IST.pdf
Deep Learning for 3D Reconstruction - https://digital-library.theiet.org/files/IET_IPR_CFP_DLR.pdf