Enhanced RoBERTaSN Model for Industrial IoT Text Similarity Analysis in Smart Manufacturing Systems

IF 0.5 Q4 TELECOMMUNICATIONS
Maochun Xu, Qiang Liu, Gang Li, Chengmeng Li, Lei Ma, Ke Lin
{"title":"Enhanced RoBERTaSN Model for Industrial IoT Text Similarity Analysis in Smart Manufacturing Systems","authors":"Maochun Xu,&nbsp;Qiang Liu,&nbsp;Gang Li,&nbsp;Chengmeng Li,&nbsp;Lei Ma,&nbsp;Ke Lin","doi":"10.1002/itl2.70155","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In Industrial Internet of Things (IIoT) environments, smart manufacturing systems generate massive textual data (equipment logs, maintenance reports, etc.) requiring accurate similarity analysis for fault diagnosis and predictive maintenance. Traditional methods underperform in Industry 5.0 scenarios due to technical vocabulary and domain-specific language. This paper presents RoBERTaSN, an enhanced model combining RoBERTa with a Siamese network, featuring self-attention and dual pooling optimized for industrial texts. It enables precise similarity calculations between fault descriptions and historical records. Experiments on industrial datasets (e.g., equipment fault logs, maintenance reports) yield 94.2% accuracy in fault diagnosis text matching—7.8% higher than traditional TF-IDF (86.4%) and 6.0% higher than mainstream pretrained models (BERT: 88.2% accuracy; BiMPM: 84.67% <i>F</i>1-score), addressing semantic challenges in smart factories and advancing Industry 5.0's human–machine collaboration and intelligent decision-making goals.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 6","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In Industrial Internet of Things (IIoT) environments, smart manufacturing systems generate massive textual data (equipment logs, maintenance reports, etc.) requiring accurate similarity analysis for fault diagnosis and predictive maintenance. Traditional methods underperform in Industry 5.0 scenarios due to technical vocabulary and domain-specific language. This paper presents RoBERTaSN, an enhanced model combining RoBERTa with a Siamese network, featuring self-attention and dual pooling optimized for industrial texts. It enables precise similarity calculations between fault descriptions and historical records. Experiments on industrial datasets (e.g., equipment fault logs, maintenance reports) yield 94.2% accuracy in fault diagnosis text matching—7.8% higher than traditional TF-IDF (86.4%) and 6.0% higher than mainstream pretrained models (BERT: 88.2% accuracy; BiMPM: 84.67% F1-score), addressing semantic challenges in smart factories and advancing Industry 5.0's human–machine collaboration and intelligent decision-making goals.

Abstract Image

智能制造系统中工业物联网文本相似度分析的增强RoBERTaSN模型
在工业物联网(IIoT)环境中,智能制造系统生成大量文本数据(设备日志、维护报告等),需要进行准确的相似度分析,用于故障诊断和预测性维护。由于技术词汇和特定于领域的语言,传统方法在工业5.0场景中表现不佳。本文提出了RoBERTaSN,这是一个将RoBERTa与Siamese网络相结合的增强模型,具有针对工业文本优化的自关注和双池化特征。它可以精确地计算故障描述和历史记录之间的相似度。在工业数据集(如设备故障日志、维护报告)上的实验,故障诊断文本匹配的准确率为94.2%,比传统的TF-IDF(86.4%)高7.8%,比主流预训练模型(BERT: 88.2%准确率;BiMPM: 84.67% f1得分)高6.0%,解决了智能工厂中的语义挑战,推进了工业5.0的人机协作和智能决策目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信