{"title":"2-Selmer companion modular forms","authors":"Abhishek, Somnath Jha, Sudhanshu Shekhar","doi":"10.1007/s40316-025-00262-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>N</i> be a positive integer and <i>K</i> be a number field. Suppose that <span>\\(f_1, f_2\\in S_k(\\Gamma _0(N))\\)</span> are two newforms such that their residual Galois representations at 2 are isomorphic. Let <span>\\(\\omega _2:G_{\\mathbb {Q}}\\rightarrow {\\mathbb {Z}}_2^*\\)</span> be the 2-adic cyclotomic character. Then, under suitable hypotheses, we have shown that for every quadratic character <span>\\(\\chi \\)</span> of <i>K</i> and each critical twist <i>j</i>, the residual Greenberg 2-Selmer groups of <span>\\(f_1\\chi \\omega _p^{-j}\\)</span> and <span>\\(f_2\\chi \\omega _p^{-j}\\)</span> over <i>K</i> are isomorphic. This generalizes the corresponding result of Mazur–Rubin on 2-Selmer companion elliptic curves. Conversely, if the difference of the residual Greenberg (respectively Bloch–Kato) 2-Selmer ranks of <span>\\(f_1\\chi \\)</span> and <span>\\(f_2\\chi \\)</span> is bounded independent of every quadratic character <span>\\(\\chi \\)</span> of <i>K</i>, then under suitable hypotheses we have shown that the residual Galois representations at 2 of <span>\\(f_1\\)</span> and <span>\\(f_2\\)</span> are isomorphic as <span>\\(G_K\\)</span>-modules. The corresponding result for elliptic curves was a conjecture of Mazur–Rubin, which was proved by M. Yu.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"49 2","pages":"557 - 577"},"PeriodicalIF":0.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-025-00262-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let N be a positive integer and K be a number field. Suppose that \(f_1, f_2\in S_k(\Gamma _0(N))\) are two newforms such that their residual Galois representations at 2 are isomorphic. Let \(\omega _2:G_{\mathbb {Q}}\rightarrow {\mathbb {Z}}_2^*\) be the 2-adic cyclotomic character. Then, under suitable hypotheses, we have shown that for every quadratic character \(\chi \) of K and each critical twist j, the residual Greenberg 2-Selmer groups of \(f_1\chi \omega _p^{-j}\) and \(f_2\chi \omega _p^{-j}\) over K are isomorphic. This generalizes the corresponding result of Mazur–Rubin on 2-Selmer companion elliptic curves. Conversely, if the difference of the residual Greenberg (respectively Bloch–Kato) 2-Selmer ranks of \(f_1\chi \) and \(f_2\chi \) is bounded independent of every quadratic character \(\chi \) of K, then under suitable hypotheses we have shown that the residual Galois representations at 2 of \(f_1\) and \(f_2\) are isomorphic as \(G_K\)-modules. The corresponding result for elliptic curves was a conjecture of Mazur–Rubin, which was proved by M. Yu.
期刊介绍:
The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science.
Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages.
History:
The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique.
On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues.
Histoire:
La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.