2-Selmer companion modular forms

IF 0.4 Q3 MATHEMATICS
Abhishek, Somnath Jha, Sudhanshu Shekhar
{"title":"2-Selmer companion modular forms","authors":"Abhishek,&nbsp;Somnath Jha,&nbsp;Sudhanshu Shekhar","doi":"10.1007/s40316-025-00262-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>N</i> be a positive integer and <i>K</i> be a number field. Suppose that <span>\\(f_1, f_2\\in S_k(\\Gamma _0(N))\\)</span> are two newforms such that their residual Galois representations at 2 are isomorphic. Let <span>\\(\\omega _2:G_{\\mathbb {Q}}\\rightarrow {\\mathbb {Z}}_2^*\\)</span> be the 2-adic cyclotomic character. Then, under suitable hypotheses, we have shown that for every quadratic character <span>\\(\\chi \\)</span> of <i>K</i> and each critical twist <i>j</i>,  the residual Greenberg 2-Selmer groups of <span>\\(f_1\\chi \\omega _p^{-j}\\)</span> and <span>\\(f_2\\chi \\omega _p^{-j}\\)</span> over <i>K</i> are isomorphic. This generalizes the corresponding result of Mazur–Rubin on 2-Selmer companion elliptic curves. Conversely, if the difference of the residual Greenberg (respectively Bloch–Kato) 2-Selmer ranks of <span>\\(f_1\\chi \\)</span> and <span>\\(f_2\\chi \\)</span> is bounded independent of every quadratic character <span>\\(\\chi \\)</span> of <i>K</i>,  then under suitable hypotheses we have shown that the residual Galois representations at 2 of <span>\\(f_1\\)</span> and <span>\\(f_2\\)</span> are isomorphic as <span>\\(G_K\\)</span>-modules. The corresponding result for elliptic curves was a conjecture of Mazur–Rubin, which was proved by M. Yu.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"49 2","pages":"557 - 577"},"PeriodicalIF":0.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-025-00262-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let N be a positive integer and K be a number field. Suppose that \(f_1, f_2\in S_k(\Gamma _0(N))\) are two newforms such that their residual Galois representations at 2 are isomorphic. Let \(\omega _2:G_{\mathbb {Q}}\rightarrow {\mathbb {Z}}_2^*\) be the 2-adic cyclotomic character. Then, under suitable hypotheses, we have shown that for every quadratic character \(\chi \) of K and each critical twist j,  the residual Greenberg 2-Selmer groups of \(f_1\chi \omega _p^{-j}\) and \(f_2\chi \omega _p^{-j}\) over K are isomorphic. This generalizes the corresponding result of Mazur–Rubin on 2-Selmer companion elliptic curves. Conversely, if the difference of the residual Greenberg (respectively Bloch–Kato) 2-Selmer ranks of \(f_1\chi \) and \(f_2\chi \) is bounded independent of every quadratic character \(\chi \) of K,  then under suitable hypotheses we have shown that the residual Galois representations at 2 of \(f_1\) and \(f_2\) are isomorphic as \(G_K\)-modules. The corresponding result for elliptic curves was a conjecture of Mazur–Rubin, which was proved by M. Yu.

2-Selmer同伴模形式
设N为正整数,K为数字域。假设\(f_1, f_2\in S_k(\Gamma _0(N))\)是两个新形式,它们在2处的残差伽罗瓦表示是同构的。设\(\omega _2:G_{\mathbb {Q}}\rightarrow {\mathbb {Z}}_2^*\)为二进切线字符。然后,在适当的假设下,我们证明了对于K的每个二次元\(\chi \)和每个临界捻j, K上\(f_1\chi \omega _p^{-j}\)和\(f_2\chi \omega _p^{-j}\)的残差Greenberg 2-Selmer群是同构的。推广了Mazur-Rubin在2-Selmer伴椭圆曲线上的相应结果。相反,如果\(f_1\chi \)和\(f_2\chi \)的残差Greenberg(分别为bloh - kato) 2- selmer秩的差是有界的,与K的每个二次字符\(\chi \)无关,那么在适当的假设下,我们已经证明了\(f_1\)和\(f_2\)的残差伽罗瓦表示在2处同构为\(G_K\) -模块。椭圆曲线的相应结果是Mazur-Rubin的一个猜想,由M. Yu证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信