The capitulation problem in certain pure cubic fields

IF 0.4 Q3 MATHEMATICS
Siham Aouissi, Daniel C. Mayer
{"title":"The capitulation problem in certain pure cubic fields","authors":"Siham Aouissi,&nbsp;Daniel C. Mayer","doi":"10.1007/s40316-025-00248-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\Gamma ={\\mathbb {Q}}(\\root 3 \\of {n})\\)</span> be a pure cubic field with normal closure <span>\\(k={\\mathbb {Q}}(\\root 3 \\of {n},\\zeta ),\\)</span> where <span>\\(n&gt;1\\)</span> denotes a cube free integer, and <span>\\(\\zeta \\)</span> is a primitive cube root of unity. Suppose <i>k</i> possesses an elementary bicyclic 3-class group <span>\\({\\textrm{Cl}}_3(k),\\)</span> and the conductor of <span>\\(k/{\\mathbb {Q}}(\\zeta )\\)</span> has the shape <span>\\(f\\in \\lbrace pq_1q_2,3pq,9pq\\rbrace \\)</span> where <span>\\(p\\equiv 1\\,({\\textrm{mod}}\\,9)\\)</span> and <span>\\(q,q_1,q_2\\equiv 2,5\\,({\\textrm{mod}}\\,9)\\)</span> are primes. It is disproved that there are only two possible capitulation types <span>\\(\\varkappa (k),\\)</span> either type <span>\\({\\textrm{a}}.1,\\)</span> (0000),  or type <span>\\({\\textrm{a}}.2,\\)</span> (1000). Evidence is provided, theoretically and experimentally, of two further types, <span>\\({\\text {b}}.10,\\)</span> (0320),  and <span>\\({\\textrm{d}}.23,\\)</span> (1320).</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"49 2","pages":"579 - 597"},"PeriodicalIF":0.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-025-00248-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\Gamma ={\mathbb {Q}}(\root 3 \of {n})\) be a pure cubic field with normal closure \(k={\mathbb {Q}}(\root 3 \of {n},\zeta ),\) where \(n>1\) denotes a cube free integer, and \(\zeta \) is a primitive cube root of unity. Suppose k possesses an elementary bicyclic 3-class group \({\textrm{Cl}}_3(k),\) and the conductor of \(k/{\mathbb {Q}}(\zeta )\) has the shape \(f\in \lbrace pq_1q_2,3pq,9pq\rbrace \) where \(p\equiv 1\,({\textrm{mod}}\,9)\) and \(q,q_1,q_2\equiv 2,5\,({\textrm{mod}}\,9)\) are primes. It is disproved that there are only two possible capitulation types \(\varkappa (k),\) either type \({\textrm{a}}.1,\) (0000),  or type \({\textrm{a}}.2,\) (1000). Evidence is provided, theoretically and experimentally, of two further types, \({\text {b}}.10,\) (0320),  and \({\textrm{d}}.23,\) (1320).

Abstract Image

纯立方场中的投降问题
设\(\Gamma ={\mathbb {Q}}(\root 3 \of {n})\)为具有正常闭包的纯立方场\(k={\mathbb {Q}}(\root 3 \of {n},\zeta ),\),其中\(n>1\)表示无立方整数,\(\zeta \)是单位的原始立方根。假设k具有一个初等双环3类群\({\textrm{Cl}}_3(k),\),并且\(k/{\mathbb {Q}}(\zeta )\)的导体形状为\(f\in \lbrace pq_1q_2,3pq,9pq\rbrace \),其中\(p\equiv 1\,({\textrm{mod}}\,9)\)和\(q,q_1,q_2\equiv 2,5\,({\textrm{mod}}\,9)\)为素数。只有两种可能的投降类型\(\varkappa (k),\)是不成立的,要么是\({\textrm{a}}.1,\)(0000),要么是\({\textrm{a}}.2,\)(1000)。理论和实验证据提供了两种进一步的类型,\({\text {b}}.10,\)(0320)和\({\textrm{d}}.23,\)(1320)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信