Reducing Transmission Cost of Distributed Principal Components Analysis in Wireless Networks With Accuracy Guaranteed

IF 9.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yiyi Zhang;Peng Guo;Xuefeng Liu;Chao Cai;Kui Zhang;Jiang Liu
{"title":"Reducing Transmission Cost of Distributed Principal Components Analysis in Wireless Networks With Accuracy Guaranteed","authors":"Yiyi Zhang;Peng Guo;Xuefeng Liu;Chao Cai;Kui Zhang;Jiang Liu","doi":"10.1109/TMC.2025.3586615","DOIUrl":null,"url":null,"abstract":"As a classic data processing tool, Principal Component Analysis (PCA) has been widely applied in various data analysis applications. To mitigate the high computational complexity of PCA on Big Data, distributed PCA methods have been extensively studied, which disperse the computational tasks across multiple computation units while guaranteeing the accuracy. For the scenarios of distributed PCA in wireless networks, as the data is originally dispersed across different locations, it is further required to reduce the communication cost of distributed PCA in networks, which however has been seldom studied. Reducing the communication cost of distributed PCA in wireless networks requires not only appropriately partitioning the computation of PCA, ensuring accuracy, but also effectively assigning the partitioned computations and routing strategies to the nodes. In this paper, we propose CD-PCA, a communication-efficient distributed PCA (CD-PCA) scheme. This scheme implements a transmission-benefit equipartition strategy for the network to facilitate high-accuracy distributed computation and designs novel routing strategies for nodes to execute the distributed PCA within each partitioned region. Extensive simulation results demonstrate that the proposed CD-PCA scheme can reduce transmission costs by over 30% on average compared to related methods and baseline approaches.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 11","pages":"12711-12725"},"PeriodicalIF":9.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11072364/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As a classic data processing tool, Principal Component Analysis (PCA) has been widely applied in various data analysis applications. To mitigate the high computational complexity of PCA on Big Data, distributed PCA methods have been extensively studied, which disperse the computational tasks across multiple computation units while guaranteeing the accuracy. For the scenarios of distributed PCA in wireless networks, as the data is originally dispersed across different locations, it is further required to reduce the communication cost of distributed PCA in networks, which however has been seldom studied. Reducing the communication cost of distributed PCA in wireless networks requires not only appropriately partitioning the computation of PCA, ensuring accuracy, but also effectively assigning the partitioned computations and routing strategies to the nodes. In this paper, we propose CD-PCA, a communication-efficient distributed PCA (CD-PCA) scheme. This scheme implements a transmission-benefit equipartition strategy for the network to facilitate high-accuracy distributed computation and designs novel routing strategies for nodes to execute the distributed PCA within each partitioned region. Extensive simulation results demonstrate that the proposed CD-PCA scheme can reduce transmission costs by over 30% on average compared to related methods and baseline approaches.
降低无线网络中分布式主成分分析的传输成本并保证其准确性
主成分分析作为一种经典的数据处理工具,在各种数据分析应用中得到了广泛的应用。为了缓解大数据上主成分分析的高计算复杂度,分布式主成分分析方法得到了广泛的研究,该方法将计算任务分散到多个计算单元上,同时保证了计算的准确性。对于无线网络中的分布式主成分分析场景,由于数据本来就分散在不同的位置,进一步要求降低网络中的分布式主成分分析的通信成本,但这方面的研究很少。为了降低无线网络中分布式主成分分析的通信成本,不仅需要对主成分分析的计算进行适当的划分,保证计算的准确性,而且需要将划分的计算量和路由策略有效地分配给节点。本文提出了一种高效通信的分布式主成分分析(CD-PCA)方案。该方案为网络实现了传输收益均衡分配策略,以实现高精度的分布式计算,并设计了新颖的节点路由策略,在每个分区区域内执行分布式PCA。大量的仿真结果表明,与相关方法和基线方法相比,所提出的CD-PCA方案平均可降低30%以上的传输成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信