Yuan Yao , Linlong Chen , Xianchen Wang , Xiaojun Wu
{"title":"Traffic flow forecasting based on augmented multi-component recurrent graph attention network","authors":"Yuan Yao , Linlong Chen , Xianchen Wang , Xiaojun Wu","doi":"10.1080/19427867.2025.2450577","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate real-time traffic flow forecasting has been a challenge due to the complex spatial–temporal dependencies and uncertainties associated with the dynamic changes in traffic flow. To overcome this problem, a traffic flow forecasting model based on an Augmented Multi-Component Recurrent Graph Attention Network (AMR-GAT) is proposed in this paper to model the spatial–temporal correlations and periodic offset of traffic flows. This paper introduces an augmented multi-component module to address periodic temporal offset in traffic flow forecasting. It proposes an encoder-decoder architecture combining 1D convolution and LSTM via a Temporal Correlation Learner (TCL) to capture temporal characteristics, while a Graph Attention Network (GAT) handles spatial features. TCL and GAT are integrated to manage spatial-temporal correlations, and the decoder uses TCL and convolutional neural networks to generate high-dimensional representations based on spatial-temporal sequences. Experiments on two datasets demonstrate superior prediction performance of the proposed AMR-GAT model.</div></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"17 8","pages":"Pages 1390-1398"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786725000025","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate real-time traffic flow forecasting has been a challenge due to the complex spatial–temporal dependencies and uncertainties associated with the dynamic changes in traffic flow. To overcome this problem, a traffic flow forecasting model based on an Augmented Multi-Component Recurrent Graph Attention Network (AMR-GAT) is proposed in this paper to model the spatial–temporal correlations and periodic offset of traffic flows. This paper introduces an augmented multi-component module to address periodic temporal offset in traffic flow forecasting. It proposes an encoder-decoder architecture combining 1D convolution and LSTM via a Temporal Correlation Learner (TCL) to capture temporal characteristics, while a Graph Attention Network (GAT) handles spatial features. TCL and GAT are integrated to manage spatial-temporal correlations, and the decoder uses TCL and convolutional neural networks to generate high-dimensional representations based on spatial-temporal sequences. Experiments on two datasets demonstrate superior prediction performance of the proposed AMR-GAT model.
期刊介绍:
Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research.
The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.