Learning interpretable dynamics: Influence-based clustering of energy consumption time series

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Binbin Li , Xiufeng Liu , Rongfei Ma , Yuhao Ma
{"title":"Learning interpretable dynamics: Influence-based clustering of energy consumption time series","authors":"Binbin Li ,&nbsp;Xiufeng Liu ,&nbsp;Rongfei Ma ,&nbsp;Yuhao Ma","doi":"10.1016/j.neucom.2025.131578","DOIUrl":null,"url":null,"abstract":"<div><div>Energy consumption is governed by dynamic temporal patterns, context, and user behavior. Traditional clustering methods, often operating on raw data, struggle to capture evolving feature relationships and provide interpretable subgroup definitions. To overcome these limitations, we propose a novel framework, <strong>Dynamic Influence-Based Clustering</strong>, that leverages explainable machine learning (XML) to transform time-series data into an interpretable influence space. Unlike existing approaches that apply XML post-hoc or treat clustering and explanation separately, our framework is the first to jointly optimize influence representation generation and dynamic clustering within a unified mathematical framework. In this space, each data point is represented by a vector of feature contributions to an energy usage prediction, estimated using robust attribution methods such as SHAP or Integrated Gradients applied to predictive models like gradient boosting machines or neural networks. We then introduce a dynamic clustering algorithm that optimizes a composite objective balancing cluster cohesion in the influence space with novel constraints for temporal continuity and contextual alignment—capabilities entirely absent from existing clustering methods. This integrated design enables the robust detection of evolving consumer subgroups and facilitates subgroup transition analysis and anomaly detection. Extensive experiments on two real-world energy datasets demonstrate that our framework produces demonstrably more interpretable, stable, and coherent clusters compared to both standard clustering on raw features and state-of-the-art time-series clustering baselines. The proposed framework provides actionable insights into dynamic energy usage and offers a rigorous foundation for developing interpretable learning systems in time-sensitive domains.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"657 ","pages":"Article 131578"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225022507","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Energy consumption is governed by dynamic temporal patterns, context, and user behavior. Traditional clustering methods, often operating on raw data, struggle to capture evolving feature relationships and provide interpretable subgroup definitions. To overcome these limitations, we propose a novel framework, Dynamic Influence-Based Clustering, that leverages explainable machine learning (XML) to transform time-series data into an interpretable influence space. Unlike existing approaches that apply XML post-hoc or treat clustering and explanation separately, our framework is the first to jointly optimize influence representation generation and dynamic clustering within a unified mathematical framework. In this space, each data point is represented by a vector of feature contributions to an energy usage prediction, estimated using robust attribution methods such as SHAP or Integrated Gradients applied to predictive models like gradient boosting machines or neural networks. We then introduce a dynamic clustering algorithm that optimizes a composite objective balancing cluster cohesion in the influence space with novel constraints for temporal continuity and contextual alignment—capabilities entirely absent from existing clustering methods. This integrated design enables the robust detection of evolving consumer subgroups and facilitates subgroup transition analysis and anomaly detection. Extensive experiments on two real-world energy datasets demonstrate that our framework produces demonstrably more interpretable, stable, and coherent clusters compared to both standard clustering on raw features and state-of-the-art time-series clustering baselines. The proposed framework provides actionable insights into dynamic energy usage and offers a rigorous foundation for developing interpretable learning systems in time-sensitive domains.
学习可解释的动态:基于影响的能源消耗时间序列聚类
能源消耗由动态时间模式、上下文和用户行为控制。传统的聚类方法通常对原始数据进行操作,难以捕捉不断变化的特征关系并提供可解释的子组定义。为了克服这些限制,我们提出了一个新的框架,基于影响的动态聚类,它利用可解释的机器学习(XML)将时间序列数据转换为可解释的影响空间。与应用XML post-hoc或单独处理聚类和解释的现有方法不同,我们的框架是第一个在统一的数学框架内联合优化影响表示生成和动态聚类的框架。在这个空间中,每个数据点都由对能源使用预测的特征贡献向量表示,使用稳健的归因方法(如SHAP或应用于梯度增强机或神经网络等预测模型的集成梯度)进行估计。然后,我们引入了一种动态聚类算法,该算法优化了复合目标,平衡了影响空间中的聚类内聚性,并具有时间连续性和上下文对齐的新约束-现有聚类方法完全没有的能力。这种集成设计能够对不断变化的消费者子组进行鲁棒检测,并促进子组转换分析和异常检测。在两个真实世界的能源数据集上进行的大量实验表明,与基于原始特征的标准聚类和最先进的时间序列聚类基线相比,我们的框架产生的聚类明显更具可解释性、稳定性和一致性。提出的框架为动态能源使用提供了可操作的见解,并为在时间敏感领域开发可解释的学习系统提供了严格的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信