Exploration of UHS scalability by SPS approach: Multiphysics simulation, critical dimensions, mechanisms and properties

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Flavie Lebas , Levent Karacasulu , Mattia Biesuz , Jérôme Lecourt , Christelle Bilot , Sylvain Marinel , Charles Manière
{"title":"Exploration of UHS scalability by SPS approach: Multiphysics simulation, critical dimensions, mechanisms and properties","authors":"Flavie Lebas ,&nbsp;Levent Karacasulu ,&nbsp;Mattia Biesuz ,&nbsp;Jérôme Lecourt ,&nbsp;Christelle Bilot ,&nbsp;Sylvain Marinel ,&nbsp;Charles Manière","doi":"10.1016/j.jeurceramsoc.2025.117865","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrafast High-Temperature Sintering (UHS) enables near-instantaneous densification of ceramics but is limited by part size, wall thickness, and cracking due to thermal inhomogeneities. This work introduces a scalable UHS approach using a modified Spark Plasma Sintering (SPS) chamber with a large working volume (∼113 cm<sup>3</sup>) and precise control, enabling the sintering of complex ceramic parts up to 30 mm. Direct Ink Writing (DIW) is employed to shape and debind components efficiently while preserving UHS advantages. A parametric study identifies optimal heating rates and critical wall thicknesses (≤1 mm) to minimize thermal stress. Finite element simulations link thermal gradients to stress development, offering predictive capability for complex geometries. The results reveal that organic binder decomposition strongly affects grain growth and residual porosity under ultrafast heating. This work demonstrates the feasibility of industrially scalable UHS and provides key insights for microstructure control and simulation-guided process design.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"46 3","pages":"Article 117865"},"PeriodicalIF":6.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221925006867","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrafast High-Temperature Sintering (UHS) enables near-instantaneous densification of ceramics but is limited by part size, wall thickness, and cracking due to thermal inhomogeneities. This work introduces a scalable UHS approach using a modified Spark Plasma Sintering (SPS) chamber with a large working volume (∼113 cm3) and precise control, enabling the sintering of complex ceramic parts up to 30 mm. Direct Ink Writing (DIW) is employed to shape and debind components efficiently while preserving UHS advantages. A parametric study identifies optimal heating rates and critical wall thicknesses (≤1 mm) to minimize thermal stress. Finite element simulations link thermal gradients to stress development, offering predictive capability for complex geometries. The results reveal that organic binder decomposition strongly affects grain growth and residual porosity under ultrafast heating. This work demonstrates the feasibility of industrially scalable UHS and provides key insights for microstructure control and simulation-guided process design.
利用SPS方法探索UHS可扩展性:多物理场仿真、关键维度、机制和特性
超快高温烧结(UHS)可以实现陶瓷的近瞬时致密化,但受部件尺寸、壁厚和热不均匀性引起的开裂的限制。这项工作引入了一种可扩展的UHS方法,使用改进的火花等离子烧结(SPS)室,具有大工作体积(~ 113 cm3)和精确控制,能够烧结高达30 mm的复杂陶瓷部件。直接墨水书写(DIW)用于有效地塑造和剥离组件,同时保持UHS优势。参数研究确定了最佳加热速率和临界壁厚(≤1 mm),以最小化热应力。有限元模拟将热梯度与应力发展联系起来,为复杂几何形状提供预测能力。结果表明,在超快加热条件下,有机粘结剂的分解对晶粒生长和残余孔隙率有较大影响。这项工作证明了工业可扩展UHS的可行性,并为微结构控制和仿真指导的工艺设计提供了关键见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The European Ceramic Society
Journal of The European Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
10.70
自引率
12.30%
发文量
863
审稿时长
35 days
期刊介绍: The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信