Uniform regularity estimates for nonlinear diffusion–advection equations in the hard-congestion limit

IF 1.3 2区 数学 Q1 MATHEMATICS
Noemi David , Filippo Santambrogio , Markus Schmidtchen
{"title":"Uniform regularity estimates for nonlinear diffusion–advection equations in the hard-congestion limit","authors":"Noemi David ,&nbsp;Filippo Santambrogio ,&nbsp;Markus Schmidtchen","doi":"10.1016/j.na.2025.113953","DOIUrl":null,"url":null,"abstract":"<div><div>We present regularity results for nonlinear drift–diffusion equations of porous medium type (together with their incompressible limit). We relax the assumptions imposed on the drift term with respect to previous results and additionally study the effect of linear diffusion on our regularity result (a scenario of particular interest in the incompressible case, for it represents the motion of particles driven by a Brownian motion subject to a density constraint). Specifically, this work concerns the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>-summability of the pressure gradient in porous medium flows with drifts that is stable with respect to the exponent of the nonlinearity, and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-estimates on the pressure Hessian (in particular, in the incompressible case with linear diffusion we prove that the pressure is the positive part of an <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-function).</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"263 ","pages":"Article 113953"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25002056","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present regularity results for nonlinear drift–diffusion equations of porous medium type (together with their incompressible limit). We relax the assumptions imposed on the drift term with respect to previous results and additionally study the effect of linear diffusion on our regularity result (a scenario of particular interest in the incompressible case, for it represents the motion of particles driven by a Brownian motion subject to a density constraint). Specifically, this work concerns the L4-summability of the pressure gradient in porous medium flows with drifts that is stable with respect to the exponent of the nonlinearity, and L2-estimates on the pressure Hessian (in particular, in the incompressible case with linear diffusion we prove that the pressure is the positive part of an H2-function).
硬拥塞极限下非线性扩散-平流方程的一致正则性估计
给出了多孔介质型非线性漂移扩散方程的正则性结果及其不可压缩极限。我们根据先前的结果放宽了对漂移项的假设,并进一步研究了线性扩散对我们的正则性结果的影响(在不可压缩情况下,这是一个特别有趣的场景,因为它代表了受密度约束的布朗运动驱动的粒子运动)。具体来说,这项工作涉及的是相对于非线性指数稳定的具有漂移的多孔介质流动的压力梯度的l4 -可和性,以及压力Hessian的l2 -估计(特别是在具有线性扩散的不可压缩情况下,我们证明了压力是h2 -函数的正部分)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信