Junyu Wang , Zizhen Lin , Tianrui Wang , Meng Ge , Longbiao Wang , Jianwu Dang
{"title":"LORT: Locally refined convolution and Taylor transformer for monaural speech enhancement","authors":"Junyu Wang , Zizhen Lin , Tianrui Wang , Meng Ge , Longbiao Wang , Jianwu Dang","doi":"10.1016/j.specom.2025.103314","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving superior enhancement performance while maintaining a low parameter count and computational complexity remains a challenge in the field of speech enhancement. In this paper, we introduce LORT, a novel architecture that integrates spatial-channel enhanced Taylor Transformer and locally refined convolution for efficient and robust speech enhancement. We propose a Taylor multi-head self-attention (T-MSA) module enhanced with spatial-channel enhancement attention (SCEA), designed to facilitate inter-channel information exchange and alleviate the spatial attention limitations inherent in Taylor-based Transformers. To complement global modeling, we further present a locally refined convolution (LRC) block that integrates convolutional feed-forward layers, time–frequency dense local convolutions, and gated units to capture fine-grained local details. Built upon a U-Net-like encoder–decoder structure with only 16 output channels in the encoder, LORT processes noisy inputs through multi-resolution T-MSA modules using alternating downsampling and upsampling operations. The enhanced magnitude and phase spectra are decoded independently and optimized through a composite loss function that jointly considers magnitude, complex, phase, discriminator, and consistency objectives. Experimental results on the VCTK+DEMAND and DNS Challenge datasets demonstrate that LORT achieves competitive or superior performance to state-of-the-art (SOTA) models with only 0.96M parameters, highlighting its effectiveness for real-world speech enhancement applications with limited computational resources.</div></div>","PeriodicalId":49485,"journal":{"name":"Speech Communication","volume":"175 ","pages":"Article 103314"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167639325001293","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving superior enhancement performance while maintaining a low parameter count and computational complexity remains a challenge in the field of speech enhancement. In this paper, we introduce LORT, a novel architecture that integrates spatial-channel enhanced Taylor Transformer and locally refined convolution for efficient and robust speech enhancement. We propose a Taylor multi-head self-attention (T-MSA) module enhanced with spatial-channel enhancement attention (SCEA), designed to facilitate inter-channel information exchange and alleviate the spatial attention limitations inherent in Taylor-based Transformers. To complement global modeling, we further present a locally refined convolution (LRC) block that integrates convolutional feed-forward layers, time–frequency dense local convolutions, and gated units to capture fine-grained local details. Built upon a U-Net-like encoder–decoder structure with only 16 output channels in the encoder, LORT processes noisy inputs through multi-resolution T-MSA modules using alternating downsampling and upsampling operations. The enhanced magnitude and phase spectra are decoded independently and optimized through a composite loss function that jointly considers magnitude, complex, phase, discriminator, and consistency objectives. Experimental results on the VCTK+DEMAND and DNS Challenge datasets demonstrate that LORT achieves competitive or superior performance to state-of-the-art (SOTA) models with only 0.96M parameters, highlighting its effectiveness for real-world speech enhancement applications with limited computational resources.
期刊介绍:
Speech Communication is an interdisciplinary journal whose primary objective is to fulfil the need for the rapid dissemination and thorough discussion of basic and applied research results.
The journal''s primary objectives are:
• to present a forum for the advancement of human and human-machine speech communication science;
• to stimulate cross-fertilization between different fields of this domain;
• to contribute towards the rapid and wide diffusion of scientifically sound contributions in this domain.