The existence of ground state normalized solution for mass supercritical modified Kirchhoff equation

IF 1.3 Q2 MATHEMATICS, APPLIED
Zhongxiang Wang , Cai Chang
{"title":"The existence of ground state normalized solution for mass supercritical modified Kirchhoff equation","authors":"Zhongxiang Wang ,&nbsp;Cai Chang","doi":"10.1016/j.rinam.2025.100649","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we focus on the existence of ground state solution with prescribed <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm for the following modified Kirchhoff problem: <span><span><span><math><mrow><mo>−</mo><mfenced><mrow><mi>a</mi><mo>+</mo><mi>b</mi><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi></mrow></mfenced><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>u</mi><mi>Δ</mi><mrow><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>−</mo><mi>λ</mi><mi>u</mi><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>N</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> are constants, <span><math><mrow><mi>p</mi><mo>∈</mo><mfenced><mrow><mn>4</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup></mrow></mfenced></mrow></math></span>, <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>6</mn></mrow></math></span> if <span><math><mrow><mi>N</mi><mo>=</mo><mn>3</mn></mrow></math></span>, and <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mo>+</mo><mi>∞</mi></mrow></math></span> if <span><math><mrow><mi>N</mi><mo>=</mo><mn>2</mn></mrow></math></span>. By employing a novel scaling method, we establish the existence of ground state normalized solutions for the above problem. Our result is new for the mass supercritical case <span><math><mrow><mn>4</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>&lt;</mo><mi>p</mi><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>, notably for the case <span><math><mrow><mi>p</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"28 ","pages":"Article 100649"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259003742500113X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we focus on the existence of ground state solution with prescribed L2-norm for the following modified Kirchhoff problem: a+bRN|u|2dxΔuuΔ(u2)λu=|u|p2u,xRN,where N=2,3, a,b>0 are constants, p4+4N,2, 2=6 if N=3, and 2=+ if N=2. By employing a novel scaling method, we establish the existence of ground state normalized solutions for the above problem. Our result is new for the mass supercritical case 4+4N<p2, notably for the case p=2.
质量超临界修正Kirchhoff方程基态规范化解的存在性
本文重点讨论了下列修正Kirchhoff问题- a+b∫RN|∇u|2dxΔu−uΔ(u2) - λu=|u|p−2u,x∈RN,其中N=2,3, a,b>;0为常数,p∈4+4N,2∗,如果N=3, 2∗=6,如果N=2, 2∗=+∞,具有规定l2范数的基态解的存在性。采用一种新颖的标度方法,建立了上述问题的基态归一化解的存在性。我们的结果对于质量超临界情况(4+4N<p≤2∗)是新的,特别是对于p=2∗的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信