{"title":"The existence of ground state normalized solution for mass supercritical modified Kirchhoff equation","authors":"Zhongxiang Wang , Cai Chang","doi":"10.1016/j.rinam.2025.100649","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we focus on the existence of ground state solution with prescribed <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm for the following modified Kirchhoff problem: <span><span><span><math><mrow><mo>−</mo><mfenced><mrow><mi>a</mi><mo>+</mo><mi>b</mi><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi></mrow></mfenced><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>u</mi><mi>Δ</mi><mrow><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>−</mo><mi>λ</mi><mi>u</mi><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>N</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>></mo><mn>0</mn></mrow></math></span> are constants, <span><math><mrow><mi>p</mi><mo>∈</mo><mfenced><mrow><mn>4</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup></mrow></mfenced></mrow></math></span>, <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>6</mn></mrow></math></span> if <span><math><mrow><mi>N</mi><mo>=</mo><mn>3</mn></mrow></math></span>, and <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mo>+</mo><mi>∞</mi></mrow></math></span> if <span><math><mrow><mi>N</mi><mo>=</mo><mn>2</mn></mrow></math></span>. By employing a novel scaling method, we establish the existence of ground state normalized solutions for the above problem. Our result is new for the mass supercritical case <span><math><mrow><mn>4</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo><</mo><mi>p</mi><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>, notably for the case <span><math><mrow><mi>p</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"28 ","pages":"Article 100649"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259003742500113X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we focus on the existence of ground state solution with prescribed -norm for the following modified Kirchhoff problem: where , are constants, , if , and if . By employing a novel scaling method, we establish the existence of ground state normalized solutions for the above problem. Our result is new for the mass supercritical case , notably for the case .