Efficient computation for the eigenvalues and eigenfunctions of two-dimensional non-separable linear canonical transform

IF 1.3 Q2 MATHEMATICS, APPLIED
Yuru Tian, Feng Zhang
{"title":"Efficient computation for the eigenvalues and eigenfunctions of two-dimensional non-separable linear canonical transform","authors":"Yuru Tian,&nbsp;Feng Zhang","doi":"10.1016/j.rinam.2025.100645","DOIUrl":null,"url":null,"abstract":"<div><div>The parameter matrix of the two-dimensional non-separable linear canonical transform (2D-NSLCT) determines its specific form and properties. Certain forms of the 2D-NSLCT are consistent with well-known transforms, such as two-dimensional non-separable fractional Fourier transform (2D-NSFrFT), Fresnel transform, and other related transforms. Based on the analysis of the eigenvalues and eigenfunctions of these special transforms, this paper proposes an efficient method for computing the eigenvalues and eigenfunctions of the 2D-NSLCT. Specifically, based on the properties of similar matrices, if the parameter matrix of the 2D-NSLCT is similar to that of a special transform (e.g., 2D-NSFrFT or other transforms), then the eigenvalues of the 2D-NSLCT are identical to those of the special transform. Moreover, the eigenfunctions of the 2D-NSLCT can be computed using the known eigenfunctions of this special transform based on the additivity of the 2D-NSLCT. The detailed derivation is presented in this paper, and some applications of the 2D-NSLCT’s eigenfunction are also discussed.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"28 ","pages":"Article 100645"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425001098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The parameter matrix of the two-dimensional non-separable linear canonical transform (2D-NSLCT) determines its specific form and properties. Certain forms of the 2D-NSLCT are consistent with well-known transforms, such as two-dimensional non-separable fractional Fourier transform (2D-NSFrFT), Fresnel transform, and other related transforms. Based on the analysis of the eigenvalues and eigenfunctions of these special transforms, this paper proposes an efficient method for computing the eigenvalues and eigenfunctions of the 2D-NSLCT. Specifically, based on the properties of similar matrices, if the parameter matrix of the 2D-NSLCT is similar to that of a special transform (e.g., 2D-NSFrFT or other transforms), then the eigenvalues of the 2D-NSLCT are identical to those of the special transform. Moreover, the eigenfunctions of the 2D-NSLCT can be computed using the known eigenfunctions of this special transform based on the additivity of the 2D-NSLCT. The detailed derivation is presented in this paper, and some applications of the 2D-NSLCT’s eigenfunction are also discussed.
二维不可分线性正则变换的特征值和特征函数的高效计算
二维不可分线性正则变换(2D-NSLCT)的参数矩阵决定了它的具体形式和性质。2D-NSLCT的某些形式与众所周知的变换一致,例如二维不可分分数傅里叶变换(2D-NSFrFT)、菲涅耳变换和其他相关变换。在分析这些特殊变换的特征值和特征函数的基础上,提出了一种计算2D-NSLCT特征值和特征函数的有效方法。具体来说,根据相似矩阵的性质,如果2D-NSLCT的参数矩阵与特殊变换(如2D-NSFrFT或其他变换)的参数矩阵相似,则2D-NSLCT的特征值与特殊变换的特征值相同。基于2D-NSLCT的可加性,利用该特殊变换的已知特征函数可以计算2D-NSLCT的特征函数。本文给出了二维nslct特征函数的详细推导过程,并讨论了二维nslct特征函数的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信