Enabling dendrite-free lithium metal batteries through a constrained phase-field model

IF 1.3 Q2 MATHEMATICS, APPLIED
Ben Mansour Dia , Guy Olivier Ngongang Ndjawa
{"title":"Enabling dendrite-free lithium metal batteries through a constrained phase-field model","authors":"Ben Mansour Dia ,&nbsp;Guy Olivier Ngongang Ndjawa","doi":"10.1016/j.rinam.2025.100632","DOIUrl":null,"url":null,"abstract":"<div><div>High-capacity batteries that employ lithium-metal anodes experience filamentary dendrite growth at the anode/electrolyte interface, which significantly impacts battery performance and safety. In this study, we introduce a constrained phase-field approach to model dendrite-free electro-deposition by incorporating an optimal control mechanism into the phase-field evolution. Specifically, dendrite formation is mitigated by introducing an energy functional that penalizes the formation of interfaces with high-curvature protrusions. We develop a coupled multiphysics model comprising a nonconserved Allen–Cahn equation for the metal electrode interface, a reaction–diffusion (Cahn–Hilliard-type) equation for ionic transport, and electrostatic charge conservation with Butler–Volmer boundary kinetics. The model is solved under a variational framework, yielding modified phase-field evolution equations that steers deposition away from dendritic pathways. Our findings suggest a novel paradigm for designing charging protocols and interface modifications that could enable safer dendrite-free lithium-metal batteries.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"28 ","pages":"Article 100632"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

High-capacity batteries that employ lithium-metal anodes experience filamentary dendrite growth at the anode/electrolyte interface, which significantly impacts battery performance and safety. In this study, we introduce a constrained phase-field approach to model dendrite-free electro-deposition by incorporating an optimal control mechanism into the phase-field evolution. Specifically, dendrite formation is mitigated by introducing an energy functional that penalizes the formation of interfaces with high-curvature protrusions. We develop a coupled multiphysics model comprising a nonconserved Allen–Cahn equation for the metal electrode interface, a reaction–diffusion (Cahn–Hilliard-type) equation for ionic transport, and electrostatic charge conservation with Butler–Volmer boundary kinetics. The model is solved under a variational framework, yielding modified phase-field evolution equations that steers deposition away from dendritic pathways. Our findings suggest a novel paradigm for designing charging protocols and interface modifications that could enable safer dendrite-free lithium-metal batteries.
通过约束相场模型实现无枝晶锂金属电池
采用锂金属阳极的高容量电池在阳极/电解质界面处会出现丝状枝晶生长,这对电池的性能和安全性产生了重大影响。在本研究中,我们引入了一种约束相场方法,通过将最优控制机制纳入相场演化中来模拟无枝晶电沉积。具体来说,通过引入能量泛函来抑制具有高曲率突起的界面的形成,可以减轻枝晶的形成。我们建立了一个耦合的多物理场模型,其中包括金属电极界面的非守恒Allen-Cahn方程,离子输运的反应-扩散(cahn - hilliard型)方程,以及具有Butler-Volmer边界动力学的静电电荷守恒。该模型在变分框架下求解,得到改进的相场演化方程,使沉积远离树突路径。我们的研究结果为设计充电协议和接口修改提供了一种新的范例,可以实现更安全的无枝晶锂金属电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信