Enhancing IDS performance through a comparative analysis of Random Forest, XGBoost, and Deep Neural Networks

IF 4.9
Sow Thierno Hamidou, Adda Mehdi
{"title":"Enhancing IDS performance through a comparative analysis of Random Forest, XGBoost, and Deep Neural Networks","authors":"Sow Thierno Hamidou,&nbsp;Adda Mehdi","doi":"10.1016/j.mlwa.2025.100738","DOIUrl":null,"url":null,"abstract":"<div><div>Intrusion Detection Systems (IDS) face major challenges in network security, notably the need to combine a high detection rate with reliable performance. This reliability is often affected by class imbalances and inadequate hyperparameter optimization. This article addresses the issue of improving the detection rate of IDS by evaluating and comparing three machine learning algorithms: Random Forest (RF), XGBoost, and Deep Neural Networks (DNN), using the NSL-KDD dataset. In our methodology, we integrate SMOTE (Synthetic Minority Oversampling Technique) to tackle the unbalanced nature of the data, ensuring a more balanced representation of the different classes. This approach helps optimize model performance, reduce bias, and enhance robustness. Additionally, hyperparameter optimization is performed using Optuna, ensuring that each algorithm operates at its optimal level. The results show that our model, using the Random Forest algorithm, achieves an accuracy of 99.80%, surpassing the performance of XGBoost and Deep Neural Networks (DNN). This makes our approach a true asset for intrusion detection methods in computer networks.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"22 ","pages":"Article 100738"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025001215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intrusion Detection Systems (IDS) face major challenges in network security, notably the need to combine a high detection rate with reliable performance. This reliability is often affected by class imbalances and inadequate hyperparameter optimization. This article addresses the issue of improving the detection rate of IDS by evaluating and comparing three machine learning algorithms: Random Forest (RF), XGBoost, and Deep Neural Networks (DNN), using the NSL-KDD dataset. In our methodology, we integrate SMOTE (Synthetic Minority Oversampling Technique) to tackle the unbalanced nature of the data, ensuring a more balanced representation of the different classes. This approach helps optimize model performance, reduce bias, and enhance robustness. Additionally, hyperparameter optimization is performed using Optuna, ensuring that each algorithm operates at its optimal level. The results show that our model, using the Random Forest algorithm, achieves an accuracy of 99.80%, surpassing the performance of XGBoost and Deep Neural Networks (DNN). This makes our approach a true asset for intrusion detection methods in computer networks.
通过比较分析随机森林、XGBoost和深度神经网络来增强IDS性能
入侵检测系统(IDS)面临着网络安全的重大挑战,特别是需要将高检测率与可靠的性能相结合。这种可靠性经常受到类不平衡和不充分的超参数优化的影响。本文通过使用NSL-KDD数据集评估和比较三种机器学习算法:随机森林(RF)、XGBoost和深度神经网络(DNN),解决了提高IDS检测率的问题。在我们的方法中,我们整合了SMOTE(合成少数过采样技术)来解决数据的不平衡性质,确保不同类别的更平衡的表示。这种方法有助于优化模型性能,减少偏差,增强鲁棒性。此外,使用Optuna执行超参数优化,确保每个算法在其最佳水平上运行。结果表明,我们的模型使用随机森林算法,达到99.80%的准确率,超过了XGBoost和深度神经网络(DNN)的性能。这使我们的方法成为计算机网络中入侵检测方法的真正资产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信