Ehsanolah Assareh , Nima Izadyar , Emad Tandis , Mehdi Khiadani , Amir shahavand , Neha Agarwal , Arian Gerami , Ahmed Rezk , Minkyu Kim , Reza Kord , Tahereh Pirhoushyaran , Mehdi Hosseinzadeh , Saleh Mobayen
{"title":"Thermoeconomic optimization of climate-adaptive solar and wind multi-generation systems using artificial intelligence and thermal energy recovery","authors":"Ehsanolah Assareh , Nima Izadyar , Emad Tandis , Mehdi Khiadani , Amir shahavand , Neha Agarwal , Arian Gerami , Ahmed Rezk , Minkyu Kim , Reza Kord , Tahereh Pirhoushyaran , Mehdi Hosseinzadeh , Saleh Mobayen","doi":"10.1016/j.engappai.2025.112481","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a hybrid multi-generation energy system designed to overcome solar intermittency while meeting the global demand for integrated delivery of electricity, water, cooling, and sustainable fuels in the transition to decarbonization. The engineering application integrates solar thermal and wind energy with a modified Brayton cycle, a Steam Rankine Cycle (SRC), and a Thermoelectric Generator (TEG) to simultaneously produce electricity, fresh water via Reverse Osmosis (RO), hydrogen and oxygen via Proton Exchange Membrane Electrolyzer (PEME), and cooling (via absorption chiller) within a unified optimization framework. The system was modeled using Engineering Equation Solver (EES) and optimized via Response Surface Methodology (RSM) based on 11 decision variables. To address the complexity of optimization, a second phase applied Artificial Intelligence (AI) techniques: Adaptive Boosting (AdaBoost) for predictive modelling and Particle Swarm Optimization (PSO) for global optimization. Under optimal conditions, the Response Surface Methodology yielded an exergy efficiency of 45.8 % with a cost rate of 576.76 United States Dollars per hour (USD/h), while AI reduced costs to 211.2 USD/h with a moderate efficiency trade-off. Simulation of the optimized configuration across eight diverse climates identified Quebec as most viable, generating 22,629.6 Megawatt-hours per year (MWh/year) of electricity and avoiding 4616.4 tons of Carbon Dioxide (CO<sub>2</sub>) emissions annually. Integration of wind energy stabilizes solar variability, enhancing performance. AI contributes to optimizing complex interactions, nonlinear constraints, and multiple conflicting objectives. The methodology offers a scalable, generalizable framework for designing intelligent, climate-resilient infrastructures. Future research includes AI-enabled real-time control, experimental validation, and broader deployment strategies.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"162 ","pages":"Article 112481"},"PeriodicalIF":8.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625025126","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a hybrid multi-generation energy system designed to overcome solar intermittency while meeting the global demand for integrated delivery of electricity, water, cooling, and sustainable fuels in the transition to decarbonization. The engineering application integrates solar thermal and wind energy with a modified Brayton cycle, a Steam Rankine Cycle (SRC), and a Thermoelectric Generator (TEG) to simultaneously produce electricity, fresh water via Reverse Osmosis (RO), hydrogen and oxygen via Proton Exchange Membrane Electrolyzer (PEME), and cooling (via absorption chiller) within a unified optimization framework. The system was modeled using Engineering Equation Solver (EES) and optimized via Response Surface Methodology (RSM) based on 11 decision variables. To address the complexity of optimization, a second phase applied Artificial Intelligence (AI) techniques: Adaptive Boosting (AdaBoost) for predictive modelling and Particle Swarm Optimization (PSO) for global optimization. Under optimal conditions, the Response Surface Methodology yielded an exergy efficiency of 45.8 % with a cost rate of 576.76 United States Dollars per hour (USD/h), while AI reduced costs to 211.2 USD/h with a moderate efficiency trade-off. Simulation of the optimized configuration across eight diverse climates identified Quebec as most viable, generating 22,629.6 Megawatt-hours per year (MWh/year) of electricity and avoiding 4616.4 tons of Carbon Dioxide (CO2) emissions annually. Integration of wind energy stabilizes solar variability, enhancing performance. AI contributes to optimizing complex interactions, nonlinear constraints, and multiple conflicting objectives. The methodology offers a scalable, generalizable framework for designing intelligent, climate-resilient infrastructures. Future research includes AI-enabled real-time control, experimental validation, and broader deployment strategies.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.