Linearized localized orthogonal decomposition for quasilinear nonmonotone elliptic PDE

IF 7.3 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Maher Khrais, Barbara Verfürth
{"title":"Linearized localized orthogonal decomposition for quasilinear nonmonotone elliptic PDE","authors":"Maher Khrais,&nbsp;Barbara Verfürth","doi":"10.1016/j.cma.2025.118426","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose and analyze a multiscale method for a class of quasilinear elliptic problems of nonmonotone type with spatially multiscale coefficient. The numerical approach is inspired by the Localized Orthogonal Decomposition (LOD), so that we do not require structural assumptions such as periodicity or scale separation and only need minimal regularity assumptions on the coefficient. To construct the multiscale space, we solve linear fine-scale problems on small local subdomains, for which we consider two different linearization techniques. For both, we present a rigorous well-posedness analysis and convergence estimates in the <span><math><msup><mi>H</mi><mn>1</mn></msup></math></span>-semi norm. We compare and discuss theoretically and numerically the performance of our strategies for different linearization points. Both numerical experiments and theoretical analysis demonstrate the validity and applicability of the method.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"448 ","pages":"Article 118426"},"PeriodicalIF":7.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004578252500698X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose and analyze a multiscale method for a class of quasilinear elliptic problems of nonmonotone type with spatially multiscale coefficient. The numerical approach is inspired by the Localized Orthogonal Decomposition (LOD), so that we do not require structural assumptions such as periodicity or scale separation and only need minimal regularity assumptions on the coefficient. To construct the multiscale space, we solve linear fine-scale problems on small local subdomains, for which we consider two different linearization techniques. For both, we present a rigorous well-posedness analysis and convergence estimates in the H1-semi norm. We compare and discuss theoretically and numerically the performance of our strategies for different linearization points. Both numerical experiments and theoretical analysis demonstrate the validity and applicability of the method.
拟线性非单调椭圆偏微分方程的线性化局部正交分解
本文提出并分析了一类具有空间多尺度系数的非单调型拟线性椭圆型问题的多尺度方法。数值方法受到局部正交分解(LOD)的启发,因此我们不需要周期性或尺度分离等结构假设,只需要对系数进行最小的规则性假设。为了构造多尺度空间,我们在小的局部子域上求解线性细尺度问题,为此我们考虑了两种不同的线性化技术。对于两者,我们提出了严格的适定性分析和h1 -半范数的收敛估计。我们从理论上和数值上比较和讨论了我们的策略在不同线性化点上的性能。数值实验和理论分析均证明了该方法的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信