Modified cosmology through generalized mass-to-horizon entropy: Implications for structure growth and primordial gravitational waves

IF 10.5 4区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Giuseppe Gaetano Luciano
{"title":"Modified cosmology through generalized mass-to-horizon entropy: Implications for structure growth and primordial gravitational waves","authors":"Giuseppe Gaetano Luciano","doi":"10.1016/j.jheap.2025.100487","DOIUrl":null,"url":null,"abstract":"<div><div>In the framework of entropic cosmology, entropic forces arising at the cosmological horizon have been proposed as an alternative mechanism to explain the Universe's current accelerated phase. However, recent studies have shown that, under the Clausius relation and assuming a linear mass-to-horizon (MHR) relation, all entropic force models reduce to the original Bekenstein-Hawking formulation, regardless of the specific form of the horizon entropy. As a result, they inherit the same observational limitations in accounting for cosmic dynamics. To address this issue, a generalized MHR has been introduced, providing the foundation for a modified cosmological scenario rooted in the gravity-thermodynamics conjecture. In this work, we explore the implications of this generalized framework for early-Universe dynamics. Specifically, we analyze the growth of matter perturbations within the spherical Top-Hat formalism in the linear regime, showing that the density contrast profile is significantly influenced by the modified background dynamics predicted by the model. Moreover, considering the sensitivity of upcoming gravitational wave detectors in the sub-<span><math><msup><mrow><mn>10</mn></mrow><mrow><mn>3</mn></mrow></msup><mspace></mspace><mrow><mi>Hz</mi></mrow></math></span> range, we examine the impact on the relic abundance of Primordial Gravitational Waves (PGWs), identifying parameter regions where deviations from standard cosmology may arise through an enhanced PGW spectrum.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"50 ","pages":"Article 100487"},"PeriodicalIF":10.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404825001685","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the framework of entropic cosmology, entropic forces arising at the cosmological horizon have been proposed as an alternative mechanism to explain the Universe's current accelerated phase. However, recent studies have shown that, under the Clausius relation and assuming a linear mass-to-horizon (MHR) relation, all entropic force models reduce to the original Bekenstein-Hawking formulation, regardless of the specific form of the horizon entropy. As a result, they inherit the same observational limitations in accounting for cosmic dynamics. To address this issue, a generalized MHR has been introduced, providing the foundation for a modified cosmological scenario rooted in the gravity-thermodynamics conjecture. In this work, we explore the implications of this generalized framework for early-Universe dynamics. Specifically, we analyze the growth of matter perturbations within the spherical Top-Hat formalism in the linear regime, showing that the density contrast profile is significantly influenced by the modified background dynamics predicted by the model. Moreover, considering the sensitivity of upcoming gravitational wave detectors in the sub-103Hz range, we examine the impact on the relic abundance of Primordial Gravitational Waves (PGWs), identifying parameter regions where deviations from standard cosmology may arise through an enhanced PGW spectrum.
广义质量视界熵的修正宇宙学:对结构增长和原始引力波的影响
在熵宇宙学的框架下,在宇宙视界产生的熵力被提出作为解释宇宙当前加速阶段的另一种机制。然而,最近的研究表明,在克劳休斯关系下,假设质量-视界线性关系(MHR),所有的熵力模型都简化为原始的Bekenstein-Hawking公式,而不管视界熵的具体形式如何。因此,它们在解释宇宙动力学方面继承了同样的观测局限性。为了解决这个问题,一个广义的MHR被引入,为一个基于引力-热力学猜想的修正宇宙学场景提供了基础。在这项工作中,我们探讨了这一广义框架对早期宇宙动力学的影响。具体地说,我们分析了线性体系中球形Top-Hat形式下物质扰动的增长,表明密度对比轮廓受到模型预测的修正背景动力学的显著影响。此外,考虑到即将到来的引力波探测器在103hz以下范围内的灵敏度,我们研究了对原始引力波(PGWs)遗迹丰度的影响,确定了通过增强的原始引力波频谱可能产生与标准宇宙学偏差的参数区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Astrophysics
Journal of High Energy Astrophysics Earth and Planetary Sciences-Space and Planetary Science
CiteScore
9.70
自引率
5.30%
发文量
38
审稿时长
65 days
期刊介绍: The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信