A novel deep learning framework for predicting protein-ligand interaction fingerprints from sequence data: integrating graph inductive bias transformer with Kolmogorov-Arnold networks

IF 2.9 Q2 TOXICOLOGY
Lixin Lei, Qianjin Guo, Wu Liu, Zijun Wang, Kaitai Han, Chaojing Shi, Zhenxing Li, Sichao Lu, Mengqiu Wang, Zhiwei Zhang, Ruoyan Dai, Zhenghui Wang, Xingyu Liu
{"title":"A novel deep learning framework for predicting protein-ligand interaction fingerprints from sequence data: integrating graph inductive bias transformer with Kolmogorov-Arnold networks","authors":"Lixin Lei,&nbsp;Qianjin Guo,&nbsp;Wu Liu,&nbsp;Zijun Wang,&nbsp;Kaitai Han,&nbsp;Chaojing Shi,&nbsp;Zhenxing Li,&nbsp;Sichao Lu,&nbsp;Mengqiu Wang,&nbsp;Zhiwei Zhang,&nbsp;Ruoyan Dai,&nbsp;Zhenghui Wang,&nbsp;Xingyu Liu","doi":"10.1016/j.comtox.2025.100386","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately modeling protein–ligand interactions is a central challenge in computational protein design and drug discovery. Traditional interaction fingerprint (IFP) approaches, while valuable, struggle to capture subtle binding features and adapt to diverse structural contexts. To address these limitations, we propose <strong>GITK</strong>, a deep learning framework that integrates a modified graph inductive bias transformer (GRIT) with Kolmogorov–Arnold networks (KANs) for interpretable interaction fingerprint prediction. GRIT introduces inductive bias to effectively represent both local and global graph structures of proteins and ligands, while KAN provides a principled functional decomposition that enhances nonlinear feature learning and interpretability. Benchmarking across multiple datasets demonstrates that GITK outperforms state-of-the-art models in binding affinity prediction, functional effect classification, and virtual screening. Moreover, GITK enables reliable selectivity analysis, successfully highlighting conformational differences and key residues in adenosine receptor subtypes, consistent with experimental findings such as the selectivity of the A1 antagonist DPCPX.</div></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"36 ","pages":"Article 100386"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468111325000465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately modeling protein–ligand interactions is a central challenge in computational protein design and drug discovery. Traditional interaction fingerprint (IFP) approaches, while valuable, struggle to capture subtle binding features and adapt to diverse structural contexts. To address these limitations, we propose GITK, a deep learning framework that integrates a modified graph inductive bias transformer (GRIT) with Kolmogorov–Arnold networks (KANs) for interpretable interaction fingerprint prediction. GRIT introduces inductive bias to effectively represent both local and global graph structures of proteins and ligands, while KAN provides a principled functional decomposition that enhances nonlinear feature learning and interpretability. Benchmarking across multiple datasets demonstrates that GITK outperforms state-of-the-art models in binding affinity prediction, functional effect classification, and virtual screening. Moreover, GITK enables reliable selectivity analysis, successfully highlighting conformational differences and key residues in adenosine receptor subtypes, consistent with experimental findings such as the selectivity of the A1 antagonist DPCPX.
从序列数据中预测蛋白质-配体相互作用指纹的一种新的深度学习框架:将图感应偏置变压器与Kolmogorov-Arnold网络集成
准确地模拟蛋白质与配体的相互作用是计算蛋白质设计和药物发现的核心挑战。传统的交互指纹(IFP)方法虽然有价值,但难以捕捉微妙的绑定特征并适应不同的结构背景。为了解决这些限制,我们提出了GITK,这是一个深度学习框架,它将改进的图感应偏压变压器(GRIT)与Kolmogorov-Arnold网络(KANs)集成在一起,用于可解释的交互指纹预测。GRIT引入了归纳偏置来有效地表示蛋白质和配体的局部和全局图结构,而KAN提供了原则性的功能分解,增强了非线性特征的学习和可解释性。跨多个数据集的基准测试表明,GITK在结合亲和预测、功能效果分类和虚拟筛选方面优于最先进的模型。此外,GITK能够进行可靠的选择性分析,成功地突出腺苷受体亚型的构象差异和关键残基,与A1拮抗剂DPCPX的选择性等实验结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Toxicology
Computational Toxicology Computer Science-Computer Science Applications
CiteScore
5.50
自引率
0.00%
发文量
53
审稿时长
56 days
期刊介绍: Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信