TransPhyX: A data-driven method for dynamic physical field prediction in stochastic load time-series

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qiyin Lin , Feiyu Gu , Mingjun Qiu , Chen Wang , Jian Zhuang , Jun Hong
{"title":"TransPhyX: A data-driven method for dynamic physical field prediction in stochastic load time-series","authors":"Qiyin Lin ,&nbsp;Feiyu Gu ,&nbsp;Mingjun Qiu ,&nbsp;Chen Wang ,&nbsp;Jian Zhuang ,&nbsp;Jun Hong","doi":"10.1016/j.knosys.2025.114492","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamic prediction of in-service physical fields (e.g. stress, strain, and temperature fields) constitutes a cornerstone technology for digital governance of mechanical equipment. The stochasticity and time-varying characteristics of external excitation loads (e.g. thermal, vibrational, and impact loads) introduce significant complexity in physical field prediction. Online monitoring of physical fields at the assembly interfaces of mechanical systems is critical for ensuring structural safety, extending service life, and optimizing design. This study proposes TransPhyX (Transformer-Based Physical Field Prediction with XGBoost Precoder), a hybrid data-driven framework designed to overcome these challenges. The novelty of TransPhyX lies in: (1) a recursive stochastic load generation and parametric dataset construction method tailored for dynamic prediction tasks; (2) a modular hybrid architecture that decouples transient load encoding (via XGBoost) and dynamic sequence modeling (via Transformer), improving spatiotemporal continuity and generalization; and (3) an Outlier Removal Ensemble (ORE) algorithm that fuses multi-scale predictions to eliminate anomalies and enhance robustness. Validated on flip-chip thermal management and flange-bolt stress prediction, TransPhyX achieves 99.79 % prediction fidelity with a 97.79 % reduction in computational costs compared to FEM, outperforming AutoGAN and TransUNet baselines in both accuracy and stability. These contributions establish TransPhyX as a rapid, high-fidelity solution for real-time structural health monitoring and digital twin implementation in stochastic loading environments.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"330 ","pages":"Article 114492"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095070512501531X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic prediction of in-service physical fields (e.g. stress, strain, and temperature fields) constitutes a cornerstone technology for digital governance of mechanical equipment. The stochasticity and time-varying characteristics of external excitation loads (e.g. thermal, vibrational, and impact loads) introduce significant complexity in physical field prediction. Online monitoring of physical fields at the assembly interfaces of mechanical systems is critical for ensuring structural safety, extending service life, and optimizing design. This study proposes TransPhyX (Transformer-Based Physical Field Prediction with XGBoost Precoder), a hybrid data-driven framework designed to overcome these challenges. The novelty of TransPhyX lies in: (1) a recursive stochastic load generation and parametric dataset construction method tailored for dynamic prediction tasks; (2) a modular hybrid architecture that decouples transient load encoding (via XGBoost) and dynamic sequence modeling (via Transformer), improving spatiotemporal continuity and generalization; and (3) an Outlier Removal Ensemble (ORE) algorithm that fuses multi-scale predictions to eliminate anomalies and enhance robustness. Validated on flip-chip thermal management and flange-bolt stress prediction, TransPhyX achieves 99.79 % prediction fidelity with a 97.79 % reduction in computational costs compared to FEM, outperforming AutoGAN and TransUNet baselines in both accuracy and stability. These contributions establish TransPhyX as a rapid, high-fidelity solution for real-time structural health monitoring and digital twin implementation in stochastic loading environments.
TransPhyX:一种数据驱动的随机负荷时间序列动态物理场预测方法
在役物理场(如应力、应变和温度场)的动态预测是机械设备数字化治理的基础技术。外部激励载荷(如热载荷、振动载荷和冲击载荷)的随机性和时变特性给物理场预测带来了极大的复杂性。在线监测机械系统装配界面的物理场对于确保结构安全、延长使用寿命和优化设计至关重要。本研究提出了TransPhyX(基于变压器的物理场预测与XGBoost预编码器),这是一种混合数据驱动框架,旨在克服这些挑战。TransPhyX的新颖之处在于:(1)针对动态预测任务,提出了一种递归随机负荷生成和参数化数据集构建方法;(2)模块化混合架构,将瞬态负载编码(通过XGBoost)和动态序列建模(通过Transformer)解耦,提高了时空连续性和泛化能力;(3)融合多尺度预测来消除异常并增强鲁棒性的离群值去除集成(ORE)算法。经过倒装芯片热管理和法兰螺栓应力预测的验证,与FEM相比,TransPhyX的预测保真度达到99.79%,计算成本降低97.79%,在精度和稳定性方面都优于AutoGAN和TransUNet基线。这些贡献使TransPhyX成为一种快速、高保真的解决方案,用于实时结构健康监测和随机载荷环境下的数字孪生实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信