The parallel visual perception network based on nonlinear spiking neural P systems for camouflaged object detection

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Nan Zhou, Hong Peng, Zhicai Liu
{"title":"The parallel visual perception network based on nonlinear spiking neural P systems for camouflaged object detection","authors":"Nan Zhou,&nbsp;Hong Peng,&nbsp;Zhicai Liu","doi":"10.1016/j.knosys.2025.114532","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous species have evolved camouflage through morphological adaptations that mimic environmental colors and textures, posing significant challenges for visual detection systems. Current camouflaged object detection (COD) methods remain limited in simulating biological visual mechanisms due to inadequate multi-stage cognitive modeling and weak biological correspondence in neural computations. To address these limitations, a parallel visual perception network (NSNPVPNet) based on nonlinear spiking neural P (NSNP) systems is proposed, simulating biological visual processes through three core modules: scene perception, cognitive reasoning, and decision inference module. A bio-inspired convolutional block reconstructed through NSNP systems enhances biological-computational mapping relationships. Experimental evaluations across four benchmark datasets demonstrate superior performance over twenty state-of-the-art COD methods, achieving average metric improvements of 3.2% (<span><math><msub><mi>S</mi><mi>m</mi></msub></math></span>), 2.5% (<span><math><mrow><mi>a</mi><msub><mi>E</mi><mi>m</mi></msub></mrow></math></span>), 5.4% (<span><math><msubsup><mi>F</mi><mi>β</mi><mi>w</mi></msubsup></math></span>), and 1.2% (<span><math><mi>M</mi></math></span>). These advancements validate NSNP systems’ potential in COD applications and pioneer new bio-inspired approaches for bionic visual computing. The implementation is available at: <span><span>https://github.com/Williamzhounan/NSNPVPNet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"330 ","pages":"Article 114532"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125015710","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous species have evolved camouflage through morphological adaptations that mimic environmental colors and textures, posing significant challenges for visual detection systems. Current camouflaged object detection (COD) methods remain limited in simulating biological visual mechanisms due to inadequate multi-stage cognitive modeling and weak biological correspondence in neural computations. To address these limitations, a parallel visual perception network (NSNPVPNet) based on nonlinear spiking neural P (NSNP) systems is proposed, simulating biological visual processes through three core modules: scene perception, cognitive reasoning, and decision inference module. A bio-inspired convolutional block reconstructed through NSNP systems enhances biological-computational mapping relationships. Experimental evaluations across four benchmark datasets demonstrate superior performance over twenty state-of-the-art COD methods, achieving average metric improvements of 3.2% (Sm), 2.5% (aEm), 5.4% (Fβw), and 1.2% (M). These advancements validate NSNP systems’ potential in COD applications and pioneer new bio-inspired approaches for bionic visual computing. The implementation is available at: https://github.com/Williamzhounan/NSNPVPNet.
基于非线性脉冲神经系统的并行视觉感知网络伪装目标检测
许多物种通过形态适应进化出伪装,模仿环境的颜色和纹理,这对视觉检测系统构成了重大挑战。目前的伪装目标检测方法在模拟生物视觉机制方面存在一定的局限性,主要是由于多阶段认知建模不足和神经计算中的生物对应性较弱。为了解决这些问题,提出了一种基于非线性峰值神经(NSNP)系统的并行视觉感知网络(NSNPVPNet),通过场景感知、认知推理和决策推理三个核心模块模拟生物视觉过程。通过NSNP系统重建的生物启发卷积块增强了生物-计算映射关系。在四个基准数据集上的实验评估表明,20种最先进的COD方法的性能优于其他方法,实现了3.2% (Sm)、2.5% (aEm)、5.4% (Fβw)和1.2% (M)的平均度量改进。这些进步验证了NSNP系统在COD应用中的潜力,并开创了仿生视觉计算的新生物灵感方法。实现可在:https://github.com/Williamzhounan/NSNPVPNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信