An integrated TOPSIS framework with Full-Range Weight Sensitivity Analysis for robust decision analysis

Àlex Gaona, Albert Guisasola, Juan Antonio Baeza
{"title":"An integrated TOPSIS framework with Full-Range Weight Sensitivity Analysis for robust decision analysis","authors":"Àlex Gaona,&nbsp;Albert Guisasola,&nbsp;Juan Antonio Baeza","doi":"10.1016/j.dajour.2025.100642","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-criteria decision-making (MCDM) is widely used in engineering to assist in the selection of the best alternative according to various criteria. Many MCDM methods rely on fixed weight assignments, limiting their ability to reflect uncertainties or variations in decision-maker preferences. This work shows a novel approach that integrates the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) with conventional one-at-a-time Weight Sensitivity Analysis (WSA) and, for the first time, introduces the Full-Range Weight Sensitivity Analysis (FRWSA). FRWSA enumerates all admissible weight vectors on a discretized simplex and summarizes robustness as dominance frequency, the share of the simplex for which an alternative ranks first. A wastewater treatment plant (WWTP) case study evaluating four different configurations illustrates the approach. Using FRWSA with step <em>h</em> = 0.05 (10 million weight combinations), configuration A2/O-D dominates 82.80% of the weight simplex, with UCT at 12.17%, A2/O-S at 4.94%, and BARD at 0.09%. Comparing with Monte Carlo sampling, FRWSA provides a deterministic, variance-free baseline: MC–Dirichlet with <span><math><mrow><mi>α</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span> is nearly identical (JSD <span><math><mo>≈</mo></math></span> 0.001 bits), <span><math><mrow><mi>α</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>0</mn></mrow></math></span> is close but distinct (JSD <span><math><mo>≈</mo></math></span> 0.007-0.008 bits), and plain MC remains farther (JSD <span><math><mo>≈</mo></math></span> 0.043 bits) over 10<sup>4</sup> – 10<sup>7</sup> draws. The framework improves transparency via global coverage and boundary diagnostics and is method-agnostic (replicated with VIKOR in the SI). A reusable MATLAB implementation is provided to facilitate adoption. This integrated analysis supports robust and transparent engineering decisions wherever weight uncertainty matters.</div></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"17 ","pages":"Article 100642"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662225000980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-criteria decision-making (MCDM) is widely used in engineering to assist in the selection of the best alternative according to various criteria. Many MCDM methods rely on fixed weight assignments, limiting their ability to reflect uncertainties or variations in decision-maker preferences. This work shows a novel approach that integrates the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) with conventional one-at-a-time Weight Sensitivity Analysis (WSA) and, for the first time, introduces the Full-Range Weight Sensitivity Analysis (FRWSA). FRWSA enumerates all admissible weight vectors on a discretized simplex and summarizes robustness as dominance frequency, the share of the simplex for which an alternative ranks first. A wastewater treatment plant (WWTP) case study evaluating four different configurations illustrates the approach. Using FRWSA with step h = 0.05 (10 million weight combinations), configuration A2/O-D dominates 82.80% of the weight simplex, with UCT at 12.17%, A2/O-S at 4.94%, and BARD at 0.09%. Comparing with Monte Carlo sampling, FRWSA provides a deterministic, variance-free baseline: MC–Dirichlet with α=0.5 is nearly identical (JSD 0.001 bits), α=1.0 is close but distinct (JSD 0.007-0.008 bits), and plain MC remains farther (JSD 0.043 bits) over 104 – 107 draws. The framework improves transparency via global coverage and boundary diagnostics and is method-agnostic (replicated with VIKOR in the SI). A reusable MATLAB implementation is provided to facilitate adoption. This integrated analysis supports robust and transparent engineering decisions wherever weight uncertainty matters.
基于全范围权敏感性分析的TOPSIS框架鲁棒性决策分析
多准则决策(MCDM)在工程中广泛应用于根据各种准则辅助选择最佳方案。许多MCDM方法依赖于固定的权重分配,限制了它们反映决策者偏好的不确定性或变化的能力。这项工作展示了一种新的方法,该方法将基于理想解相似性的顺序偏好技术(TOPSIS)与传统的单次权敏感性分析(WSA)相结合,并首次引入了全范围权敏感性分析(FRWSA)。FRWSA列举了离散化单纯形上所有允许的权向量,并将鲁棒性概括为优势频率,即替代方案在单纯形中排名第一的份额。一个污水处理厂(WWTP)案例研究评估了四种不同的配置说明了该方法。使用步长h = 0.05(1000万个权重组合)的FRWSA,配置A2/O-D占权重单纯形的82.80%,UCT占12.17%,A2/O-S占4.94%,BARD占0.09%。与蒙特卡罗采样相比,FRWSA提供了一个确定性的、无方差的基线:α=0.5的MC - dirichlet几乎相同(JSD≈0.001 bits), α=1.0的MC接近但不同(JSD≈0.007-0.008 bits),而普通MC在104 - 107次抽取中保持更远(JSD≈0.043 bits)。该框架通过全球覆盖和边界诊断提高了透明度,并且与方法无关(与SI中的VIKOR复制)。提供了一个可重用的MATLAB实现以促进采用。无论权重不确定性是否重要,这种集成分析都支持稳健和透明的工程决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信