Jinmiao Zhao , Zelin Shi , Chuang Yu , Yunpeng Liu , Yimain Dai
{"title":"Towards robust infrared small target detection: A feature-enhanced and sensitivity-tunable framework","authors":"Jinmiao Zhao , Zelin Shi , Chuang Yu , Yunpeng Liu , Yimain Dai","doi":"10.1016/j.knosys.2025.114519","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, single-frame infrared small target (SIRST) detection technology has attracted widespread attention. Different from most existing deep learning-based methods that focus on improving network architectures, we propose a feature-enhanced and sensitivity-tunable (FEST) framework, which is compatible with existing SIRST detection networks and further enhances their detection performance. The FEST framework improves the model’s robustness from two aspects: feature enhancement and target confidence regulation. For feature enhancement, we employ a multi-scale fusion strategy to improve the model’s perception to multi-scale features of multi-size targets, and design an edge enhancement difficulty mining (EEDM) loss to guide the network to continuously focus on challenging target regions and edge features during training. For target confidence regulation, an adjustable sensitivity (AS) strategy is proposed for network post-processing. This strategy enhances the model’s adaptability in complex scenarios and significantly improves the detection rate of infrared small targets while maintaining segmentation accuracy. Extensive experimental results show that our FEST framework can effectively enhance the performance of existing SIRST detection networks. The code is available at <span><span>https://github.com/YuChuang1205/FEST-Framework</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"330 ","pages":"Article 114519"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125015588","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, single-frame infrared small target (SIRST) detection technology has attracted widespread attention. Different from most existing deep learning-based methods that focus on improving network architectures, we propose a feature-enhanced and sensitivity-tunable (FEST) framework, which is compatible with existing SIRST detection networks and further enhances their detection performance. The FEST framework improves the model’s robustness from two aspects: feature enhancement and target confidence regulation. For feature enhancement, we employ a multi-scale fusion strategy to improve the model’s perception to multi-scale features of multi-size targets, and design an edge enhancement difficulty mining (EEDM) loss to guide the network to continuously focus on challenging target regions and edge features during training. For target confidence regulation, an adjustable sensitivity (AS) strategy is proposed for network post-processing. This strategy enhances the model’s adaptability in complex scenarios and significantly improves the detection rate of infrared small targets while maintaining segmentation accuracy. Extensive experimental results show that our FEST framework can effectively enhance the performance of existing SIRST detection networks. The code is available at https://github.com/YuChuang1205/FEST-Framework.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.