Smooth representations of affine Kac-Moody algebras

IF 1.5 1区 数学 Q1 MATHEMATICS
V. Futorny , X. Guo , Y. Xue , K. Zhao
{"title":"Smooth representations of affine Kac-Moody algebras","authors":"V. Futorny ,&nbsp;X. Guo ,&nbsp;Y. Xue ,&nbsp;K. Zhao","doi":"10.1016/j.aim.2025.110559","DOIUrl":null,"url":null,"abstract":"<div><div>Smooth modules for affine Kac-Moody algebras have a prime importance for the quantum field theory as they correspond to the representations of the universal affine vertex algebras. But, very little is known about such modules beyond the category of positive energy representations. We construct a new class of smooth modules over affine Kac-Moody algebras. In a particular case, these modules are isomorphic to those induced from generalized Whittaker modules for Takiff Lie algebras. We establish the irreducibility criterion for constructed modules in the case of the Lie algebra <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"481 ","pages":"Article 110559"},"PeriodicalIF":1.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004578","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Smooth modules for affine Kac-Moody algebras have a prime importance for the quantum field theory as they correspond to the representations of the universal affine vertex algebras. But, very little is known about such modules beyond the category of positive energy representations. We construct a new class of smooth modules over affine Kac-Moody algebras. In a particular case, these modules are isomorphic to those induced from generalized Whittaker modules for Takiff Lie algebras. We establish the irreducibility criterion for constructed modules in the case of the Lie algebra A1(1).
仿射Kac-Moody代数的光滑表示
仿射Kac-Moody代数的光滑模在量子场论中具有重要意义,因为它们对应于通用仿射顶点代数的表示。但是,除了正能量表示的范畴之外,对这些模块知之甚少。在仿射Kac-Moody代数上构造了一类新的光滑模。在特殊情况下,这些模与由Takiff Lie代数的广义Whittaker模导出的模同构。在李代数A1(1)的情况下,建立了构造模的不可约准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信