TMFS-MTS: Toolbox for metaheuristic feature selection in multivariate time series

IF 1.2 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Mariusz Oszust, Marian Wysocki
{"title":"TMFS-MTS: Toolbox for metaheuristic feature selection in multivariate time series","authors":"Mariusz Oszust,&nbsp;Marian Wysocki","doi":"10.1016/j.simpa.2025.100789","DOIUrl":null,"url":null,"abstract":"<div><div>Feature selection in multivariate time series is a key challenge in modern data analysis, as high-dimensional data often include temporal dependencies and irrelevant features degrading classifier performance. To address these issues, a comparison with existing approaches is essential. Therefore, this work introduces the Toolbox for Metaheuristic Feature Selection in Multivariate Time Series (TMFS-MTS), providing an environment for feature selection and metaheuristic evaluation. It supports diverse fitness measures and advanced visualizations, including convergence curves, feature count tracking, runtime analysis, Wilcoxon tests, and 2D embeddings. Implemented in MATLAB, TMFS-MTS offers a standardized framework for advancing research in multivariate time series feature selection.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"26 ","pages":"Article 100789"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963825000491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Feature selection in multivariate time series is a key challenge in modern data analysis, as high-dimensional data often include temporal dependencies and irrelevant features degrading classifier performance. To address these issues, a comparison with existing approaches is essential. Therefore, this work introduces the Toolbox for Metaheuristic Feature Selection in Multivariate Time Series (TMFS-MTS), providing an environment for feature selection and metaheuristic evaluation. It supports diverse fitness measures and advanced visualizations, including convergence curves, feature count tracking, runtime analysis, Wilcoxon tests, and 2D embeddings. Implemented in MATLAB, TMFS-MTS offers a standardized framework for advancing research in multivariate time series feature selection.
多变量时间序列的元启发式特征选择工具箱
多变量时间序列的特征选择是现代数据分析中的一个关键挑战,因为高维数据通常包含时间依赖性和降低分类器性能的不相关特征。为了解决这些问题,与现有方法进行比较是必不可少的。因此,本文引入了多元时间序列中元启发式特征选择工具箱(TMFS-MTS),为特征选择和元启发式评估提供了一个环境。它支持多种适应度度量和高级可视化,包括收敛曲线、特征计数跟踪、运行时分析、Wilcoxon测试和2D嵌入。TMFS-MTS在MATLAB中实现,为推进多元时间序列特征选择的研究提供了一个标准化的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信