Robust FDI for turbine-governor and network parameters in interconnected power systems via mixed H∞/pole placement observers

IF 3.2 Q3 Mathematics
Chadi Nohra , Raymond Ghandour , Mahmoud Khaled , Rachid Outbib
{"title":"Robust FDI for turbine-governor and network parameters in interconnected power systems via mixed H∞/pole placement observers","authors":"Chadi Nohra ,&nbsp;Raymond Ghandour ,&nbsp;Mahmoud Khaled ,&nbsp;Rachid Outbib","doi":"10.1016/j.rico.2025.100619","DOIUrl":null,"url":null,"abstract":"<div><div>Interconnected power systems are increasingly vulnerable to parameter deviations—such as mechanical wear, blade loss, inertia degradation, or cyber-physical attacks—in turbine–governors, generators, and transmission lines. These deviations compromise stability and may lead to severe disturbances if not detected and isolated promptly. Conventional observer-based fault detection methods can identify anomalies but often fail to pinpoint the exact parameter responsible.</div><div>This paper proposes a robust Fault Detection and Isolation (FDI) framework capable of estimating and isolating key dynamic parameters, including turbine (Tt) and governor (Tg) time constants, inertia (H), damping (D), and tie-line synchronizing coefficients (Tij). The method integrates an H∞/H₂ observer with pole placement for disturbance attenuation and rapid residual generation, followed by an adaptive sliding mode estimator for parameter-specific isolation. This two-stage scheme enables precise differentiation between faults and noise, as well as between different types of parametric shifts.</div><div>Simulation studies on a multi-area load frequency control (LFC) system validate the accuracy and robustness of the proposed approach under diverse fault scenarios. Unlike conventional FDI techniques, the framework not only detects faults but also isolates their root causes, thereby providing actionable insights for operators and enhancing the resilience of modern interconnected power networks.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"21 ","pages":"Article 100619"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720725001043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Interconnected power systems are increasingly vulnerable to parameter deviations—such as mechanical wear, blade loss, inertia degradation, or cyber-physical attacks—in turbine–governors, generators, and transmission lines. These deviations compromise stability and may lead to severe disturbances if not detected and isolated promptly. Conventional observer-based fault detection methods can identify anomalies but often fail to pinpoint the exact parameter responsible.
This paper proposes a robust Fault Detection and Isolation (FDI) framework capable of estimating and isolating key dynamic parameters, including turbine (Tt) and governor (Tg) time constants, inertia (H), damping (D), and tie-line synchronizing coefficients (Tij). The method integrates an H∞/H₂ observer with pole placement for disturbance attenuation and rapid residual generation, followed by an adaptive sliding mode estimator for parameter-specific isolation. This two-stage scheme enables precise differentiation between faults and noise, as well as between different types of parametric shifts.
Simulation studies on a multi-area load frequency control (LFC) system validate the accuracy and robustness of the proposed approach under diverse fault scenarios. Unlike conventional FDI techniques, the framework not only detects faults but also isolates their root causes, thereby providing actionable insights for operators and enhancing the resilience of modern interconnected power networks.
基于混合H∞/极点放置观测器的互联电力系统中涡轮调速器和网络参数的鲁棒FDI
互联电力系统越来越容易受到参数偏差的影响,例如涡轮调速器、发电机和传输线中的机械磨损、叶片损失、惯性退化或网络物理攻击。这些偏差损害了稳定性,如果不及时发现和隔离,可能会导致严重的干扰。传统的基于观测器的故障检测方法可以识别异常,但往往不能确定准确的参数。本文提出了一种鲁棒故障检测和隔离(FDI)框架,能够估计和隔离关键动态参数,包括涡轮机(Tt)和调速器(Tg)时间常数、惯性(H)、阻尼(D)和联络线同步系数(Tij)。该方法集成了一个H∞/H₂观测器,该观测器具有极点设置,用于干扰衰减和快速残差产生,然后是一个自适应滑模估计器,用于参数特定隔离。这种两阶段方案能够精确区分故障和噪声,以及不同类型的参数移位。通过对多区域负荷频率控制系统的仿真研究,验证了该方法在不同故障情况下的准确性和鲁棒性。与传统的FDI技术不同,该框架不仅可以检测故障,还可以隔离故障的根本原因,从而为运营商提供可操作的见解,并增强现代互联电网的弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信