Adrien Vezinet , Javiera Flores-Rojas , Alexander V. Sobolev , Julien Léger , Aleksandr V. Chugunov , Valentina G. Batanova , Marlina A. Elburg , Axel Hofmann , Mélanie Balvay , Nouméa Paradis
{"title":"Igneous apatite geochemistry indicates early cratonization of continents","authors":"Adrien Vezinet , Javiera Flores-Rojas , Alexander V. Sobolev , Julien Léger , Aleksandr V. Chugunov , Valentina G. Batanova , Marlina A. Elburg , Axel Hofmann , Mélanie Balvay , Nouméa Paradis","doi":"10.1016/j.precamres.2025.107927","DOIUrl":null,"url":null,"abstract":"<div><div>Processes and mechanisms accounting for the stabilization of Archean (4.0–2.5 Ga) continental crust remain a matter of debate. Over the last decades, major efforts have been made to determine the chemical and isotopic composition of rocks belonging to the Tonalite-Trondhjemite-Granodiorite (TTG) suite, i.e. those forming the bulk of Archean continental crust, as well as late-Archean sanukitoids, the typical marker of cratonization. The extensive use of zircon elemental and isotopic signatures has indisputably been an unrivalled source of information; yet it has also biased interpretations through the prism of a single mineral, hence not reflecting the whole geological history of these magmas. To extend our understanding of early continent stabilization, a pivotal aspect of Earth’s evolution, a fresh perspective is necessary. Here, we present in-situ analyses of igneous apatite, Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>(OH,Cl,F), from Archean granitoids exposed in the eastern Kaapvaal craton for major/trace elements and U–Pb/Sr isotopes. The trace element signatures of these apatite crystals, with a clear enrichment in LREE and an elevated LREE/HREE, resemble that of apatite from sanukitoids and Phanerozoic I-type granites, a signature which can be blurred at the whole-rock scale. We interpret this signature as indicating that the studied granitoids are formed via interaction between (i) a TTG melt, formed via partial melting of a subducting oceanic crust and (ii) a mantle component, causing chemical depletion of the mantle domain involved and thus production of long-lived and stable lithospheric keels pivotal in the long-term preservation of Archean lithosphere at the Earth’s surface. Therefore, the identification of this signature—in igneous apatite from Paleo to Meso-Archean TTGs of the eastern Kaapvaal—indicates an early onset of cratonization in this region.</div></div>","PeriodicalId":49674,"journal":{"name":"Precambrian Research","volume":"430 ","pages":"Article 107927"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precambrian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301926825002530","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Processes and mechanisms accounting for the stabilization of Archean (4.0–2.5 Ga) continental crust remain a matter of debate. Over the last decades, major efforts have been made to determine the chemical and isotopic composition of rocks belonging to the Tonalite-Trondhjemite-Granodiorite (TTG) suite, i.e. those forming the bulk of Archean continental crust, as well as late-Archean sanukitoids, the typical marker of cratonization. The extensive use of zircon elemental and isotopic signatures has indisputably been an unrivalled source of information; yet it has also biased interpretations through the prism of a single mineral, hence not reflecting the whole geological history of these magmas. To extend our understanding of early continent stabilization, a pivotal aspect of Earth’s evolution, a fresh perspective is necessary. Here, we present in-situ analyses of igneous apatite, Ca5(PO4)3(OH,Cl,F), from Archean granitoids exposed in the eastern Kaapvaal craton for major/trace elements and U–Pb/Sr isotopes. The trace element signatures of these apatite crystals, with a clear enrichment in LREE and an elevated LREE/HREE, resemble that of apatite from sanukitoids and Phanerozoic I-type granites, a signature which can be blurred at the whole-rock scale. We interpret this signature as indicating that the studied granitoids are formed via interaction between (i) a TTG melt, formed via partial melting of a subducting oceanic crust and (ii) a mantle component, causing chemical depletion of the mantle domain involved and thus production of long-lived and stable lithospheric keels pivotal in the long-term preservation of Archean lithosphere at the Earth’s surface. Therefore, the identification of this signature—in igneous apatite from Paleo to Meso-Archean TTGs of the eastern Kaapvaal—indicates an early onset of cratonization in this region.
期刊介绍:
Precambrian Research publishes studies on all aspects of the early stages of the composition, structure and evolution of the Earth and its planetary neighbours. With a focus on process-oriented and comparative studies, it covers, but is not restricted to, subjects such as:
(1) Chemical, biological, biochemical and cosmochemical evolution; the origin of life; the evolution of the oceans and atmosphere; the early fossil record; palaeobiology;
(2) Geochronology and isotope and elemental geochemistry;
(3) Precambrian mineral deposits;
(4) Geophysical aspects of the early Earth and Precambrian terrains;
(5) Nature, formation and evolution of the Precambrian lithosphere and mantle including magmatic, depositional, metamorphic and tectonic processes.
In addition, the editors particularly welcome integrated process-oriented studies that involve a combination of the above fields and comparative studies that demonstrate the effect of Precambrian evolution on Phanerozoic earth system processes.
Regional and localised studies of Precambrian phenomena are considered appropriate only when the detail and quality allow illustration of a wider process, or when significant gaps in basic knowledge of a particular area can be filled.