Toughness and energy based tensile-shear cracking resistance of green concrete developed using zeolite and waste rubber particles

IF 5.6 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Reza Sagheb, Mahmoud Miri, Hamed Ghohani Arab, Iman Afshoon
{"title":"Toughness and energy based tensile-shear cracking resistance of green concrete developed using zeolite and waste rubber particles","authors":"Reza Sagheb,&nbsp;Mahmoud Miri,&nbsp;Hamed Ghohani Arab,&nbsp;Iman Afshoon","doi":"10.1016/j.tafmec.2025.105263","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the mixed-mode fracture behavior of sustainable concretes incorporating waste rubber particles and natural zeolite, addressing a gap in the literature where the combined influence of these two materials on fracture performance has not been evaluated. Experimental data from control, rubber-modified (15 %, 30 %, and 45 %), zeolite-modified (5 %, 10 %, 15 %), and hybrid concrete mixtures were analyzed for effective fracture toughness and fracture energy across mode mixity ranging from pure shear to pure tensile. Results show rubber reduces effective fracture toughness (up to 44 %) and fracture energy (up to 65 %) due to matrix softening, with greater shear-mode fracture energy loss from weakened frictional resistance. Zeolite enhances fracture toughness (up to 25 %) and fracture energy (up to 90 %), but high doses (15 %) diminish both due to porosity. Interaction plots reveal no significant fracture toughness interaction with rubber, zeolite, or mode mixity, indicating mode-independent crack initiation effects, while fracture energy exhibits significant interactions; rubber impacts shear fracture more, and zeolite boosts shear fracture energy preferentially. Zeolite's reinforcing effect on fracture energy excels at low rubber content. Regression analysis progresses from linear (Model-1: <em>R</em><sup><em>2</em></sup> = 50 % for fracture toughness, 72 % for fracture energy) to cubic-interaction models (Model-4: <em>R</em><sup><em>2</em></sup> = 91 % fracture toughness, 95 % fracture energy), with Model-4 best capturing non-linearities and interactions for precise optimization.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"141 ","pages":"Article 105263"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844225004215","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the mixed-mode fracture behavior of sustainable concretes incorporating waste rubber particles and natural zeolite, addressing a gap in the literature where the combined influence of these two materials on fracture performance has not been evaluated. Experimental data from control, rubber-modified (15 %, 30 %, and 45 %), zeolite-modified (5 %, 10 %, 15 %), and hybrid concrete mixtures were analyzed for effective fracture toughness and fracture energy across mode mixity ranging from pure shear to pure tensile. Results show rubber reduces effective fracture toughness (up to 44 %) and fracture energy (up to 65 %) due to matrix softening, with greater shear-mode fracture energy loss from weakened frictional resistance. Zeolite enhances fracture toughness (up to 25 %) and fracture energy (up to 90 %), but high doses (15 %) diminish both due to porosity. Interaction plots reveal no significant fracture toughness interaction with rubber, zeolite, or mode mixity, indicating mode-independent crack initiation effects, while fracture energy exhibits significant interactions; rubber impacts shear fracture more, and zeolite boosts shear fracture energy preferentially. Zeolite's reinforcing effect on fracture energy excels at low rubber content. Regression analysis progresses from linear (Model-1: R2 = 50 % for fracture toughness, 72 % for fracture energy) to cubic-interaction models (Model-4: R2 = 91 % fracture toughness, 95 % fracture energy), with Model-4 best capturing non-linearities and interactions for precise optimization.
利用沸石和废橡胶颗粒研制绿色混凝土的韧性和能量基抗拉剪开裂性能
本研究探讨了含有废橡胶颗粒和天然沸石的可持续混凝土的混合模式断裂行为,解决了文献中这两种材料对断裂性能的综合影响尚未被评估的空白。实验数据来自对照、橡胶改性(15%、30%和45%)、沸石改性(5%、10%、15%)和混合混凝土混合物,分析了从纯剪切到纯拉伸混合模式的有效断裂韧性和断裂能。结果表明,由于基体软化,橡胶降低了有效断裂韧性(高达44%)和断裂能(高达65%),摩擦阻力减弱导致的剪切型断裂能损失更大。沸石可提高断裂韧性(高达25%)和断裂能(高达90%),但高剂量(15%)会因孔隙而降低两者。相互作用图显示,断裂韧性与橡胶、沸石或模式混合物之间没有明显的相互作用,表明裂纹起裂作用与模式无关,而断裂能之间存在显著的相互作用;橡胶对剪切断裂的冲击更大,沸石对剪切断裂能的提升更大。低橡胶含量时,沸石对断裂能的增强作用较好。回归分析从线性模型(模型1:断裂韧性R2 = 50%,断裂能72%)发展到三次相互作用模型(模型4:R2 = 91%断裂韧性,95%断裂能),其中模型4最能捕捉非线性和相互作用,以进行精确优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Applied Fracture Mechanics
Theoretical and Applied Fracture Mechanics 工程技术-工程:机械
CiteScore
8.40
自引率
18.90%
发文量
435
审稿时长
37 days
期刊介绍: Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind. The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信