{"title":"Gamma approximation of stratified truncated exact test (GASTE-test) & application","authors":"Alexandre Wendling, Clovis Galiez","doi":"10.1016/j.csda.2025.108277","DOIUrl":null,"url":null,"abstract":"<div><div>The analysis of binary outcomes and features, such as the effect of vaccination on health, often rely on 2 <span><math><mo>×</mo></math></span> 2 contingency tables. However, confounding factors such as age or gender call for stratified analysis, by creating sub-tables, which is common in bioscience, epidemiological, and social research, as well as in meta-analyses. Traditional methods for testing associations across strata, such as the Cochran-Mantel-Haenszel (CMH) test, struggle with small sample sizes and heterogeneity of effects between strata. Exact tests can address these issues, but are computationally expensive. To address these challenges, the Gamma Approximation of Stratified Truncated Exact (GASTE) test is proposed. It approximates the exact statistic of the combination of p-values with discrete support, leveraging the gamma distribution to approximate the distribution of the test statistic under stratification, providing fast and accurate p-value calculations, even when effects vary between strata. The GASTE method maintains high statistical power and low type I error rates, outperforming traditional methods by offering more sensitive and reliable detection. It is computationally efficient and broadens the applicability of exact tests in research fields with stratified binary data. The GASTE method is demonstrated through two applications: an ecological study of Alpine plant associations and a 1973 case study on admissions at the University of California, Berkeley. The GASTE method offers substantial improvements over traditional approaches. The GASTE method is available as an open-source package at <span><span>https://github.com/AlexandreWen/gaste</span><svg><path></path></svg></span>. A Python package is available on PyPI at <span><span>https://pypi.org/project/gaste-test/</span><svg><path></path></svg></span></div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"214 ","pages":"Article 108277"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325001537","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The analysis of binary outcomes and features, such as the effect of vaccination on health, often rely on 2 2 contingency tables. However, confounding factors such as age or gender call for stratified analysis, by creating sub-tables, which is common in bioscience, epidemiological, and social research, as well as in meta-analyses. Traditional methods for testing associations across strata, such as the Cochran-Mantel-Haenszel (CMH) test, struggle with small sample sizes and heterogeneity of effects between strata. Exact tests can address these issues, but are computationally expensive. To address these challenges, the Gamma Approximation of Stratified Truncated Exact (GASTE) test is proposed. It approximates the exact statistic of the combination of p-values with discrete support, leveraging the gamma distribution to approximate the distribution of the test statistic under stratification, providing fast and accurate p-value calculations, even when effects vary between strata. The GASTE method maintains high statistical power and low type I error rates, outperforming traditional methods by offering more sensitive and reliable detection. It is computationally efficient and broadens the applicability of exact tests in research fields with stratified binary data. The GASTE method is demonstrated through two applications: an ecological study of Alpine plant associations and a 1973 case study on admissions at the University of California, Berkeley. The GASTE method offers substantial improvements over traditional approaches. The GASTE method is available as an open-source package at https://github.com/AlexandreWen/gaste. A Python package is available on PyPI at https://pypi.org/project/gaste-test/
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]