{"title":"On blowup solution in NLS equation under dispersion or nonlinearity management","authors":"Jing Li , Ying He , Cui Ning , Xiaofei Zhao","doi":"10.1016/j.physd.2025.134957","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the dispersion-managed nonlinear Schrödinger (DM-NLS) equation <span><math><mrow><mi>i</mi><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>γ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mi>Δ</mi><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi></mrow></mfrac></mrow></msup><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo></mrow></math></span> and the nonlinearity-managed NLS (NM-NLS) equation: <span><math><mrow><mi>i</mi><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>Δ</mi><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>γ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi></mrow></mfrac></mrow></msup><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> is a periodic function which is equal to <span><math><mrow><mo>−</mo><mn>1</mn></mrow></math></span> when <span><math><mrow><mi>t</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span> and is equal to 1 when <span><math><mrow><mi>t</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></mrow></math></span>. The two models share the feature that the focusing and defocusing effects convert periodically. For the classical focusing NLS, it is known that the initial data <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mfrac><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>4</mn><mi>T</mi></mrow></mfrac><mo>−</mo><mi>i</mi><mfrac><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>T</mi></mrow></mfrac></mrow></msup><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi></mrow></msub><mfenced><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>T</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> leads to a blowup solution <span><math><mrow><msup><mrow><mrow><mo>(</mo><mi>T</mi><mo>−</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mfrac><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>4</mn><mrow><mo>(</mo><mi>T</mi><mo>−</mo><mi>t</mi><mo>)</mo></mrow></mrow></mfrac><mo>−</mo><mi>i</mi><mfrac><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>T</mi><mo>−</mo><mi>t</mi></mrow></mfrac></mrow></msup><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi></mrow></msub><mfenced><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>T</mi><mo>−</mo><mi>t</mi></mrow></mfrac></mrow></mfenced><mo>,</mo></mrow></math></span> so when <span><math><mrow><mi>T</mi><mo>≤</mo><mn>1</mn></mrow></math></span>, this is also a blowup solution for DM-NLS and NM-NLS which blows up in the first focusing layer.</div><div>For DM-NLS, we prove that when <span><math><mrow><mi>T</mi><mo>></mo><mn>1</mn></mrow></math></span>, the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> above does not lead to a finite-time blowup and the corresponding solution is globally well-posed. For NM-NLS, we prove the global well-posedness for <span><math><mrow><mi>T</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and we construct solution that can blow up at any focusing layer. The theoretical studies are complemented by extensive numerical explorations towards understanding the stabilization effects in the two models and addressing their difference.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"483 ","pages":"Article 134957"},"PeriodicalIF":2.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925004348","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the dispersion-managed nonlinear Schrödinger (DM-NLS) equation and the nonlinearity-managed NLS (NM-NLS) equation: where is a periodic function which is equal to when and is equal to 1 when . The two models share the feature that the focusing and defocusing effects convert periodically. For the classical focusing NLS, it is known that the initial data leads to a blowup solution so when , this is also a blowup solution for DM-NLS and NM-NLS which blows up in the first focusing layer.
For DM-NLS, we prove that when , the initial data above does not lead to a finite-time blowup and the corresponding solution is globally well-posed. For NM-NLS, we prove the global well-posedness for and we construct solution that can blow up at any focusing layer. The theoretical studies are complemented by extensive numerical explorations towards understanding the stabilization effects in the two models and addressing their difference.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.